題目列表(包括答案和解析)
(本小題滿分14分)
已知數(shù)列中的相鄰兩項(xiàng)是關(guān)于的方程的兩個(gè)根,且.
(I)求, ,,; (II)求數(shù)列的前項(xiàng)和;
(Ⅲ)記,
,
求證:.
(本小題滿分12分)已知數(shù)列、的前n項(xiàng)和分別為、,
且滿足,.
(Ⅰ)求、的值,并證明數(shù)列是等比數(shù)列;
(Ⅱ)試確定實(shí)數(shù)的值,使數(shù)列是等差數(shù)列.
(本小題滿分12分)
已知數(shù)列{ an}的前n項(xiàng)和為Sn,且Sn=2an-l;數(shù)列{bn}滿足bn-1=bn=bnbn-1(n≥2,n∈N*)b1=1.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和T.
(本小題滿分12分)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足
an+2Sn·Sn-1=0(n≥2),a1=.
(1)求證:{}是等差數(shù)列;
(2)求an表達(dá)式;
(3)若bn=2(1-n)an(n≥2),求證:b22+b32+…+bn2<1.
(本小題滿分12分)已知數(shù)列、的前n項(xiàng)和分別為、,且滿足,。
(Ⅰ)求、的值,并證明數(shù)列是等比數(shù)列;
(Ⅱ)試確定實(shí)數(shù)的值,使數(shù)列是等差數(shù)列。
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
D
C
D
B
C
A
C
B
D
B
11、2;12、;13、;14、;15、;16、
17、解:(1)
, (6分)
∴的最小正周期為. (8分)
(2)∵,∴,
故. (12分)
18、解:(1)表示取出的三個(gè)球中數(shù)字最大者為3.
①三次取球均出現(xiàn)最大數(shù)字為3的概率
②三取取球中有2次出現(xiàn)最大數(shù)字3的概率
③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率
∴. ……………………………………………………6分
(2)在時(shí), 利用(1)的原理可知:
,(=1,2,3,4)
1
2
3
4
的概率分布為:
=1×+2×+3×+4× = .………………………………………………12分
19、解:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得底面.
因?yàn)?sub>,所以,
又,故為等腰直角三角形,,
由三垂線定理,得.
(Ⅱ)由(Ⅰ)知,依題設(shè),
故,由,,,得
,.
的面積.
連結(jié),得的面積
設(shè)到平面的距離為,由于,得
,
解得.
設(shè)與平面所成角為,則.
所以,直線與平面所成的我為.
20、解:(I)由題意知,因此,從而.
又對(duì)求導(dǎo)得.
由題意,因此,解得.
(II)由(I)知(),令,解得.
當(dāng)時(shí),,此時(shí)為減函數(shù);
當(dāng)時(shí),,此時(shí)為增函數(shù).
因此的單調(diào)遞減區(qū)間為,而的單調(diào)遞增區(qū)間為.
(III)由(II)知,在處取得極小值,此極小值也是最小值,要使()恒成立,只需.
即,從而,
解得或.
所以的取值范圍為.
21、解:(Ⅰ)解法一:易知
所以,設(shè),則
因?yàn)?sub>,故當(dāng),即點(diǎn)為橢圓短軸端點(diǎn)時(shí),有最小值
當(dāng),即點(diǎn)為橢圓長(zhǎng)軸端點(diǎn)時(shí),有最大值
解法二:易知,所以,設(shè),則
(以下同解法一)
(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線,
聯(lián)立,消去,整理得:
∴
由得:或
又
∴
又
∵,即 ∴
故由①、②得或
22、(I)解:方程的兩個(gè)根為,,
當(dāng)時(shí),,
所以;
當(dāng)時(shí),,,
所以;
當(dāng)時(shí),,,
所以時(shí);
當(dāng)時(shí),,,
所以.
(II)解:
.
(III)證明:,
所以,
.
當(dāng)時(shí),
,
,
同時(shí),
.
綜上,當(dāng)時(shí),.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com