A.或 B. C.或 D.或 查看更多

 

題目列表(包括答案和解析)

下列四個(gè)命題:

① 使用抽簽法,每個(gè)個(gè)體被抽中的機(jī)會(huì)相等;

② 將十進(jìn)制數(shù)化為二進(jìn)制數(shù)為;

③ 已知一個(gè)線性回歸方程是,則變量之間具有正相關(guān)關(guān)系;

④ 將一組數(shù)據(jù)中的每個(gè)數(shù)都加上或減去同一個(gè)數(shù)后,方差恒不變.

其中真命題的個(gè)數(shù)是(    )

A.1                B.2              C.3             D.4

 

查看答案和解析>>

關(guān)于的不等式的解為,則的取值為(   )

A.2                B.               C.-             D.-2

 

查看答案和解析>>

已知曲線的一條切線的斜率為,則切點(diǎn)的橫坐標(biāo)為(  )

A.1                B.             C.4                D.4或

 

查看答案和解析>>

△ABC中,已知C=45°,B=30°,b=2,則a等于…(    )

A.2+2           B.+1            C.2-2            D.2+2或2-2

查看答案和解析>>

關(guān)于的不等式的解為,則的取值為(   )

A.2                B.               C.-             D.-2

 

查看答案和解析>>

1、A  2,、B  3、 D  4,、B  5、 D  6、C   7、A  8、B  9、A  10、D

11、(,1]   12、-或1      13、6p     14、2    15、11

16解:解:(Ⅰ)

           

當(dāng),即時(shí),取得最大值.

(Ⅱ)當(dāng),即時(shí),

所以函數(shù)的單調(diào)遞增區(qū)間是

17、解:(Ⅰ)從15名教師中隨機(jī)選出2名共種選法,   …………………………2分

所以這2人恰好是教不同版本的男教師的概率是.  …………………5分

(Ⅱ)由題意得

;  ;

的分布列為

0

1

2

 

 

所以,數(shù)學(xué)期望

18、解法一:(Ⅰ)證明:連接

文本框:        

   

                                      

     。  ……………………3分

∥平面 …………………………5分

(Ⅱ)解:在平面

……………………8分

設(shè)。

所以,二面角的大小為。 ………………12分

19、(I)解:當(dāng)

  ①當(dāng), 方程化為

  ②當(dāng), 方程化為1+2x = 0, 解得,

  由①②得,

 (II)解:不妨設(shè),

 因?yàn)?sub>

  所以是單調(diào)遞函數(shù),    故上至多一個(gè)解,

 

20、解:(Ⅰ)由知,點(diǎn)的軌跡是以、為焦點(diǎn)的雙曲線右支,由,∴,故軌跡E的方程為…(3分)

(Ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)直線l方程為,與雙曲線方程聯(lián)立消,設(shè)、,

  • (i)∵

    ……………………(7分)

        假設(shè)存在實(shí)數(shù),使得,

        故得對任意的恒成立,

        ∴,解得 ∴當(dāng)時(shí),.

        當(dāng)直線l的斜率不存在時(shí),由知結(jié)論也成立,

        綜上,存在,使得.

       (ii)∵,∴直線是雙曲線的右準(zhǔn)線,

        由雙曲線定義得:,

        方法一:∴

        ∵,∴,∴

        注意到直線的斜率不存在時(shí),,綜上,

        方法二:設(shè)直線的傾斜角為,由于直線

    與雙曲線右支有二個(gè)交點(diǎn),∴,過

    ,垂足為,則,

    <dl id="6e448"></dl>
  •     由,得故:

    21 解:(Ⅰ)

    當(dāng)時(shí),

    ,即是等比數(shù)列. ∴; 

    (Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

     則有

    ,解得,

    再將代入得成立, 所以.  

    (III)證明:由(Ⅱ)知,所以

    ,   由

    所以,   

    從而

    .                       

     

     


    同步練習(xí)冊答案