已知函數(shù). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實數(shù)解,求實數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點個數(shù)為(  )

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

已知函數(shù)f(x)=x+log2x,則f(x)在[
12
,2]
內的零點個數(shù)是
 

查看答案和解析>>

1、A  2,、B  3、 D  4,、B  5、 D  6、C   7、A  8、B  9、A  10、D

11、(,1]   12、-或1      13、6p     14、2    15、11

16解:解:(Ⅰ)

           

,即時,取得最大值.

(Ⅱ)當,即時,

所以函數(shù)的單調遞增區(qū)間是

17、解:(Ⅰ)從15名教師中隨機選出2名共種選法,   …………………………2分

所以這2人恰好是教不同版本的男教師的概率是.  …………………5分

(Ⅱ)由題意得

;  ;

的分布列為

0

1

2

 

 

所以,數(shù)學期望

18、解法一:(Ⅰ)證明:連接

文本框:        

   

                                      

     。  ……………………3分

∥平面 …………………………5分

(Ⅱ)解:在平面

……………………8分

所以,二面角的大小為。 ………………12分

19、(I)解:當

  ①當, 方程化為

  ②當, 方程化為1+2x = 0, 解得,

  由①②得,

 (II)解:不妨設,

 因為

  所以是單調遞函數(shù),    故上至多一個解,

 

20、解:(Ⅰ)由知,點的軌跡是以、為焦點的雙曲線右支,由,∴,故軌跡E的方程為…(3分)

(Ⅱ)當直線l的斜率存在時,設直線l方程為,與雙曲線方程聯(lián)立消,設、,

(i)∵

……………………(7分)

    假設存在實數(shù),使得,

    故得對任意的恒成立,

    ∴,解得 ∴當時,.

    當直線l的斜率不存在時,由知結論也成立,

    綜上,存在,使得.

   (ii)∵,∴直線是雙曲線的右準線,

    由雙曲線定義得:,

    方法一:∴

    ∵,∴,∴

    注意到直線的斜率不存在時,,綜上,

    方法二:設直線的傾斜角為,由于直線

與雙曲線右支有二個交點,∴,過

,垂足為,則,

<dl id="sczdf"><noframes id="sczdf"><thead id="sczdf"></thead></noframes></dl>

        由,得故:

    21 解:(Ⅰ)

    時,

    ,即是等比數(shù)列. ∴; 

    (Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

     則有

    ,解得,

    再將代入得成立, 所以.  

    (III)證明:由(Ⅱ)知,所以

    ,   由

    所以,   

    從而

    .                       

     

     


    同步練習冊答案