-0-(1)求A.B.C三點的坐標,.矩形DEFG的面積為S.求S與m的函數(shù)關系.并指出m的取值范圍, 查看更多

 

題目列表(包括答案和解析)

23、如圖,已知拋物線y=-x2+2x+3與x軸的兩個交點為A、B,與y軸交于點C.
(1)求A、B、C三點的坐標?
(2)用配方法求該二次函數(shù)的對稱軸和頂點坐標?
(3)若坐標平面內(nèi)的點M,使得以點M和三點A、B、C為頂點的四邊形是平行四邊形,求點M的坐標?(直接寫出M的坐標,不用說明)

查看答案和解析>>

已知拋物線y=-x2+4x-3與x軸交于A、B兩點(A點在B點的左側),頂點為P.
(1)求A、B、P三點的坐標;
(2)在平面直角坐標系內(nèi)畫出此拋物線的簡圖,并根據(jù)簡圖寫出當x取何值時,函數(shù)值y大于零.

查看答案和解析>>

如圖,已知直線y=x+2與y軸交于點A,與拋物線y=-x2+3x+5交于B,C兩點.
(1)求A,B,C三點的坐標;
(2)求△BOC的面積.

查看答案和解析>>

如圖,拋物線c1:y=x2-2x-3與x軸交于A、B兩點(點A在點B的左側),與y軸交于精英家教網(wǎng)點C.點P為線段BC上一點,過點P作直線l⊥x軸于點F,交拋物線c1點E.
(1)求A、B、C三點的坐標;
(2)當點P在線段BC上運動時,求線段PE長的最大值;
(3)當PE為最大值時,把拋物線c1向右平移得到拋物線c2,拋物線c2與線段BE交于點M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線c1應向右平移幾個單位長度可得到拋物線c2?

查看答案和解析>>

精英家教網(wǎng)如圖,拋物線y=-
1
2
x2+
2
2
x+2與x軸交于A、B兩點,與y軸交于C點.
(1)求A、B、C三點的坐標;
(2)證明:△ABC為直角三角形;
(3)在拋物線上除C點外,是否還存在另外一個點P,使△ABP是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

一.選擇題

1. B  2.D  3.C  4.A  5.D  6.D  7.C  8.C  9.C  10.C

二.填空題

11.  12. 3858  13.;  14.  15. 5n+3或3(2n+1)-n

16. 1;提示:(-1)×(-3)-2=3-2=1

三.解答題

17.解:原式=()?=x+2

把x=+1代入上式得:原式=+3

18.(1)43  (2)略   (3) 4  

19.證CDDECBBE

20.解:(1),

這次考察中一共調(diào)查了60名學生.

   (2)

        ,

        在扇形統(tǒng)計圖中,“乒乓球”

部分所對應的圓心角為

   (3)補全統(tǒng)計圖如圖:

   (4),

    可以估計該校學生喜歡籃球活動的約有450人.

21.解:(1)設2006年平均每天的污水排放量為萬噸,則2007年平均每天的污水排放量為1.05x萬噸,依題意得:

             

            解得

    經(jīng)檢驗,是原方程的解.

           

    答:2006年平均每天的污水排放量約為56萬噸,2007年平均每天的污水排放量約為59萬噸.

(2)解:設2010年平均每天的污水處理量還需要在2007年的基礎上至少增加萬噸,依題意得:

     

    解得

    答:2010年平均每天的污水處理量還需要在2007年的基礎上至少增加萬噸.

22.(1)P(一等獎)=;P(二等獎)=,P(三等獎)=; 

  (2) 

   

  ∴活動結束后至少有5000元贊助費用于資助貧困生。

23.解:(1)在中,

,.??????????????????????????????????????????????? 2分

,

.????????????????? 4分

(2)直線相切.

證明:連結

,

.??????????????????? 5分

所以是等腰三角形頂角的平分線.

.??????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

,得.?????????????????????????????????? 7分

知,直線相切.?????????????????????????????????????????? 8分

24.解:(1)如圖,建立直角坐標系,設二次函數(shù)解析式為y=ax2c 

  ∵ D(-0.4,0.7),B(0.8,2.2),

  ∴   解得:

  ∴繩子最低點到地面的距離為0.2米

 。2)分別作EG⊥AB于G,F(xiàn)H⊥AB于H,        

  AG=(AB-EF)=(1.6-0.4)=0.6.

  在Rt△AGE中,AE=2,

 EG=≈1.9. 

∴ 2.2-1.9=0.3(米).   ∴ 木板到地面的距離約為0.3米。

25.解:⑴ 解法一:設

任取x,y的三組值代入,求出解析式,

令y=0,求出;令x=0,得y=-4,

∴ A、B、C三點的坐標分別是A(2,0),B(-4,0),C(0,-4) .

解法二:由拋物線P過點(1,-),(-3,)可知,

拋物線P的對稱軸方程為x=-1,

又∵ 拋物線P過(2,0)、(-2,-4),則由拋物線的對稱性可知,

點A、B、C的坐標分別為 A(2,0),B(-4,0),C(0,-4) .

⑵ 由題意,,而AO=2,OC=4,AD=2-m,故DG=4-2m,

,EF=DG,得BE=4-2m,∴ DE=3m,

∴SDEFG=DG?DE=(4-2m) 3m12m6m2 (0<m<2) .

 

⑶ ∵SDEFG12m6m2 (0<m<2),∴m=1時,矩形的面積最大,且最大面積是6 .

當矩形面積最大時,其頂點為D(1,0),G(1,-2),F(xiàn)(-2,-2),E(-2,0),   

設直線DF的解析式為y=kx+b,易知,k=,b=-,∴,

又可求得拋物線P的解析式為:,

,可求出x=. 設射線DF與拋物線P相交于點N,則N的橫坐標為,過N作x軸的垂線交x軸于H,有

,

點M不在拋物線P上,即點M不與N重合時,此時k的取值范圍是

k≠且k>0.

 


同步練習冊答案