17. 查看更多

 

題目列表(包括答案和解析)

(選修4-2:矩陣與變換)(本小題滿分10分)
求矩陣A=
32
21
的逆矩陣.

查看答案和解析>>

必做題:(本小題滿分10分,請(qǐng)?jiān)诖痤}指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟)
已知an(n∈N*)是二項(xiàng)式(2+x)n的展開式中x的一次項(xiàng)的系數(shù).
(Ⅰ)求an
(Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對(duì)一切正整數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>

(選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長(zhǎng)BD至點(diǎn)E.
求證:AD的延長(zhǎng)線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長(zhǎng)度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

精英家教網(wǎng)A.選修4-1:幾何證明選講
如圖,圓O1與圓O2內(nèi)切于點(diǎn)A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點(diǎn)C ( O1不在AB上).求證:AB:AC為定值.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,求過橢圓
x=5cosφ
y=3sinφ
(φ為參數(shù))的右焦點(diǎn),且與直線
x=4-2t
y=3-t
(t為參數(shù))平行的直線的普通方程.
D.選修4-5:不等式選講(本小題滿分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

(本小題滿分10分)等體積的球和正方體,試比較它們表面積的大小關(guān)系.

查看答案和解析>>

 

一、選擇題(共60分)

1―6DDBBAC  7―12DABCAC

二、填空題:(本大題共5小題,每小題5分,共20分)

13.3

14.

15.

16.240

三、解答題:本大題有6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.解:(1)

          1分

      

          5分

   (2)

          7分

       由余弦定理   9分

           10分

18.(1)記“這名考生通過書面測(cè)試”為事件A,則這名考生至少正確做出3道題,即正確做出3道題或4道題,

       故   4分

   (2)由題意得的所有可能取值分別是0,1,2,3,4,且

 

      

      

          8分

      

       的分布列為:

      

0

1

2

3

4

P

          10分

          12分

19.解法一:(1)在直平行六面體ABCD―A1B1C1D1中,

      

       又

          4分

       又

   (2)如圖,連B1C,則

       易證

       中點(diǎn),

      

          8分

       取CD中點(diǎn)M,連BM, 則平面CC1D1D,

       作于N,連NB,由三垂線定理知:

       是二面角B―DE―C的平面角     10分

       在

      

       則二面角B―DE―C的大小為    12分

       解法二:(1)以D為坐標(biāo)原點(diǎn),射線DA為軸,建立如圖所示坐標(biāo)為

       依題設(shè)

      

      

       又

       平面BDE    6分

       8分

       由(1)知平面BDE的一個(gè)法向量為

       取DC中點(diǎn)M,則

      

      

       等于二面角B―DE―C的平面角    10分

          12分

20.解:(1)由已知得   2分

       由

      

       遞減

       在區(qū)間[-1,1]上的最大值為   4分

       又

      

       由題意得

       故為所求         6分

   (2)解:

      

           8分

       二次函數(shù)的判別式為:

      

       令

       令    10分

      

       為單調(diào)遞增,極值點(diǎn)個(gè)數(shù)為0    11分

       當(dāng)=0有兩個(gè)不相等的實(shí)數(shù)根,根據(jù)極值點(diǎn)的定義,可知函數(shù)有兩個(gè)極值點(diǎn)    12分

21.解:(1)設(shè)

       化簡(jiǎn)得    3分

   (2)將    4分

       法一:兩點(diǎn)不可能關(guān)于軸對(duì)稱,

       的斜率必存在

       設(shè)直線DE的方程為

       由   5分

           6分

          7分

       且

          8分

       將代化入簡(jiǎn)得

          9分

       將,

       過定點(diǎn)(-1,-2)    10分

       將,

       過定點(diǎn)(1,2)即為A點(diǎn),舍去     11分

           12分

       法二:設(shè)    (5分)

       則   6分

       同理

       由已知得   7分

       設(shè)直線DE的方程為

       得   9分

          10分

       即直線DE過定點(diǎn)(-1,-2)    12分

22.解:(1)由    2分

       于是

       即    3分

       有   5分

          6分

   (2)由(1)得    7分

       而

      

               

           10分

       當(dāng)

       于是

       故命題得證     12分


同步練習(xí)冊(cè)答案