題目列表(包括答案和解析)
9 |
2 |
11 |
2 |
、(選修4-5:不等式選講)
已知函數(shù)。
(1)求的最小值; (2)解不等式。
已知函數(shù)(是自然對數(shù)的底數(shù))
(1)求的最小值;
(2)不等式的解集為P, 若 求實數(shù)的取值范圍;
(3)已知,是否存在等差數(shù)列和首項為公比大于0的等比數(shù)列,使數(shù)列的前n項和等于
(本小題滿分13分)
設(shè)的BC邊上的高AD=BC,a,b,c分別是內(nèi)角A,B,C的對邊。
(1)求的最小值及取得最小值時的值;
(2)把表示為的形式,判斷能否等于?并說明理由。
已知
(1)求的最小值
(2)由(1)推出的最小值C
(不必寫出推理過程,只要求寫出結(jié)果)
(3)在(2)的條件下,已知函數(shù)若對于任意的,恒有成立,求的取值范圍.
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
A
D
C
A
D
C
B
D
B
C
二、填空題:
13、 14、 15、等; 16、7
三、解答題
17、(1)由余弦定理: 又
∴ ∴
(2)∵A+B+C= ∴
∴
18、(1) (2)
19、(1)AC=1,BC=2 ,AB= ,∴∴AC
又 平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC
又∵PA平面APC ∴
(2)該幾何體的主試圖如下:
幾何體主試圖的面積為
∴ ∴
(3)取PC 的中點(diǎn)N,連接AN,由△PAC是邊長為1的正三角形,可知
由(1)BC平面PAC,可知 ∴平面PCBM
∴
20、(1)的最小值為
(2)a的取值范圍是
21、(1)曲線C的方程為
(2),存在點(diǎn)M(―1,2)滿足題意
22、(1)由于點(diǎn)B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直線上
則 因此,所以是等差數(shù)列
(2)由已知有得 同理
∴
∴
∴
(3)由(2)得,則
∴
∴
∴
由于 而
則,從而
同理:……
以上個不等式相加得:
即,從而
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com