11.設△是等腰三角形..則以為焦點且過點的雙曲線的離心率為 查看更多

 

題目列表(包括答案和解析)

是等腰三角形,,則以為焦點且過點的雙曲線的離心率為(   )

A.          B.          C.          D.

 

查看答案和解析>>

是等腰三角形,,則以為焦點且過點的雙曲線的離心率為(    )

A.          B.          C.          D.

查看答案和解析>>

(全國Ⅱ卷文11)設是等腰三角形,,則以為焦點且過點的雙曲線的離心率為(    )

A.                B.                C.              D.

查看答案和解析>>

(08年全國卷2文)設是等腰三角形,,則以為焦點且過點的雙曲線的離心率為(    )

A.      B.      C.       D.

查看答案和解析>>

(全國Ⅱ卷文11)設是等腰三角形,,則以為焦點且過點的雙曲線的離心率為(    )

A.                B.                C.              D.

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

<rt id="f0zq3"></rt>

20090508

(2)設,則,

由正弦定理:,

所以兩個正三角形的面積和,…………8分

……………10分

,

所以:………………………………………………………………12分

18.解:(1);……………………6分

(2)消費總額為1500元的概率是:……………………7分

消費總額為1400元的概率是:………8分

消費總額為1300元的概率是:

,…11分

所以消費總額大于或等于1300元的概率是;……………………12分

19.(1)證明:因為,所以平面

又因為,

平面,

平面平面;…………………4分

(2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

過點E作EF垂直CD且交于點F,因為平面平面,所以平面,

所以的長為所求,………………………………………………………………………6分

因為,所以為二面角的平面角,,

=1,

到平面的距離等于1;…………………………………………………………8分

(3)連接,由平面,,得到

所以是二面角的平面角,

,…………………………………………………………………11分

二面角大小是。……12分

20.解:(1)設等差數列的公差為,依題意得:

,

解得,所以,…………………3分

所以,

,

所以;…………………………………………………………………6分

(2),因為,所以數列是遞增數列,…8分

當且僅當時,取得最小值,

則:,

所以,即的取值范圍是!12分

21.解:(1)設點的坐標為,則點的坐標為,點的坐標為

因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

(2)設點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

假設滿足條件的直線存在,設其方程為,直線被圓截得的弦為,

 

…………………………………………7分

弦長為定值,則,即,

此時,……………………………………………………9分

所以當時,存在直線,截得的弦長為,

    當時,不存在滿足條件的直線!12分

22.解:(1),

,……2分

,

因為當時取得極大值,所以,

所以的取值范圍是:;………………………………………………………4分

(2)由下表:

0

0

遞增

極大值

遞減

極小值

遞增

………………………7分

畫出的簡圖:

依題意得:

解得:,

所以函數的解析式是:

;……9分

(3)對任意的實數都有

,

依題意有:函數在區(qū)間

上的最大值與最小值的差不大于,

………10分

在區(qū)間上有:

,

的最大值是,

的最小值是,……13分

所以

的最小值是!14分

 

 


同步練習冊答案