15.某班一天上午有4節(jié)課.每節(jié)都需要安排一名教師去上課.現(xiàn)從A.B.C.D.E.F等6名教師中安排4人分別上一節(jié)課.第一節(jié)課只能從A.B兩人中安排一人.第四節(jié)課只能從A.C兩人中安排一人.則不同的安排方案共有 . 查看更多

 

題目列表(包括答案和解析)

11、某班一天上午有4節(jié)課,每節(jié)都需要安排一名教師去上課,現(xiàn)從A、B、C、D、E、F 6名教師中安排4人分別上一節(jié)課,第一節(jié)課只能從A、B兩人中安排一人,第四節(jié)課只能從A、C兩人中安排一人,則不同的安排方案共有( 。

查看答案和解析>>

8、某班一天上午有4節(jié)課,每節(jié)都需要安排一名教師去上課,現(xiàn)從A、B、C、D、E、F 6名教師中安排4人分別上一節(jié)課,第一節(jié)課只能從A、B兩人中安排一人,第四節(jié)課只能從A、C兩人中安排一人,則不同的安排方案共有
36
種.

查看答案和解析>>

某班一天上午有4節(jié)課,每節(jié)都需要安排一名教師去上課,現(xiàn)從A、B、C、D、E、F 6名教師中安排4人分別上一節(jié)課,第一節(jié)課只能從A、B兩人中安排一人,第四節(jié)課只能從A、C兩人中安排一人,則不同的安排方案共有    種.

查看答案和解析>>

某班一天上午有4節(jié)課,每節(jié)都需要安排一名教師去上課,現(xiàn)從A、B、C、D、E、F 6名教師中安排4人分別上一節(jié)課,第一節(jié)課只能從A、B兩人中安排一人,第四節(jié)課只能從A、C兩人中安排一人,則不同的安排方案共有( )
A.24種
B.36種
C.48種
D.72種

查看答案和解析>>

某班一天上午有4節(jié)課,每節(jié)都需要安排一名教師去上課,現(xiàn)從A、B、C、D、E、F 6名教師中安排4人分別上一節(jié)課,第一節(jié)課只能從A、B兩人中安排一人,第四節(jié)課只能從A、C兩人中安排一人,則不同的安排方案共有(  )
A.24種B.36種C.48種D.72種

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

    • 20090508

      (2)設(shè),則,

      由正弦定理:,

      所以兩個(gè)正三角形的面積和,…………8分

      ……………10分

      ,,

      所以:………………………………………………………………12分

      18.解:(1);……………………6分

      (2)消費(fèi)總額為1500元的概率是:……………………7分

      消費(fèi)總額為1400元的概率是:………8分

      消費(fèi)總額為1300元的概率是:

      ,…11分

      所以消費(fèi)總額大于或等于1300元的概率是;……………………12分

      19.(1)證明:因?yàn)?sub>,所以平面

      又因?yàn)?sub>,

      平面,

      平面平面;…………………4分

      (2)因?yàn)?sub>,所以平面,所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

      過(guò)點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,所以平面,

      所以的長(zhǎng)為所求,………………………………………………………………………6分

      因?yàn)?sub>,所以為二面角的平面角,

      =1,

      點(diǎn)到平面的距離等于1;…………………………………………………………8分

      (3)連接,由平面,,得到

      所以是二面角的平面角,

      ,…………………………………………………………………11分

      二面角大小是!12分

      20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

      解得,所以,…………………3分

      所以,

      ,

      所以;…………………………………………………………………6分

      (2),因?yàn)?sub>,所以數(shù)列是遞增數(shù)列,…8分

      當(dāng)且僅當(dāng)時(shí),取得最小值,

      則:,

      所以,即的取值范圍是。………………………………………12分

      21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

      因?yàn)?sub>,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

      (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

      假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

       

      …………………………………………7分

      弦長(zhǎng)為定值,則,即,

      此時(shí),……………………………………………………9分

      所以當(dāng)時(shí),存在直線,截得的弦長(zhǎng)為,

          當(dāng)時(shí),不存在滿足條件的直線。……………………………………………12分

      22.解:(1),

      ,……2分

      ,

      因?yàn)楫?dāng)時(shí)取得極大值,所以

      所以的取值范圍是:;………………………………………………………4分

      (2)由下表:

      0

      0

      遞增

      極大值

      遞減

      極小值

      遞增

      ………………………7分

      畫(huà)出的簡(jiǎn)圖:

      依題意得:

      解得:,

      所以函數(shù)的解析式是:

      ;……9分

      (3)對(duì)任意的實(shí)數(shù)都有

      ,

      依題意有:函數(shù)在區(qū)間

      上的最大值與最小值的差不大于,

      ………10分

      在區(qū)間上有:

      ,

      的最大值是,

      的最小值是,……13分

      所以

      的最小值是!14分

       

       


      同步練習(xí)冊(cè)答案
      <small id="ewcg4"></small>
      <rt id="ewcg4"></rt>
      <button id="ewcg4"><object id="ewcg4"></object></button>
      <center id="ewcg4"></center>
    • <td id="ewcg4"></td>