0.1中年 查看更多

 

題目列表(包括答案和解析)

18、為應(yīng)對金融危機(jī),刺激消費(fèi),某市給市民發(fā)放面額為100元的旅游消費(fèi)卷,由抽樣調(diào)查預(yù)計老、中、青三類市民持有這種消費(fèi)卷到某旅游景點消費(fèi)額及其概率如下表:
200元 300元 400元 500元
老年 0.4 0.3 0.2 0.1
中年 0.3 0.4 0.2 0.1
青年 0.3 0.3 0.2 0.2
某天恰好有持有這種消費(fèi)卷的老年人、中年人、青年人各一人到該旅游景點,
(1)求這三人恰有兩人消費(fèi)額不少于300元的概率;
(2)求這三人消費(fèi)總額大于或等于1300元的概率.

查看答案和解析>>

為應(yīng)對金融危機(jī),刺激消費(fèi),某市給市民發(fā)放面額為100元的旅游消費(fèi)卷,由抽樣調(diào)查預(yù)計老、中、青三類市民持有這種消費(fèi)卷到某旅游景點消費(fèi)額及其概率如下表:
200元 300元 400元 500元
老年 0.4 0.3 0.2 0.1
中年 0.3 0.4 0.2 0.1
青年 0.3 0.3 0.2 0.2
某天恰好有持有這種消費(fèi)卷的老年人、中年人、青年人各一人到該旅游景點,
(1)求這三人恰有兩人消費(fèi)額大于300元的概率;
(2)求這三人消費(fèi)總額大于或等于1300元的概率;
(3)設(shè)這三人中消費(fèi)額大于300元的人數(shù)為ξ,求ξ的分布列及ξ的數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)為應(yīng)對金融危機(jī),刺激消費(fèi),某市給市民發(fā)放面額為100元的旅游消費(fèi)卷,由抽樣調(diào)查預(yù)計老、中、青三類市民持有這種消費(fèi)卷到某旅游景點消費(fèi)額及其概率如下表:

200元

300元

400元

500元

老年

0.4

0.3

0.2

0.1

中年

0.3

0.4

0.2

0.1

青年

0.3

0.3

0.2

0.2

某天恰好有持有這種消費(fèi)卷的老年人、中年人、青年人各一人到該旅游景點,(1)求這三人恰有兩人消費(fèi)額不少于300元的概率;(2)求這三人消費(fèi)總額大于或等于1300元的概率。

查看答案和解析>>

(本小題滿分12分)

為應(yīng)對金融危機(jī),刺激消費(fèi),某市給市民發(fā)放旅游消費(fèi)卷,由抽樣調(diào)查預(yù)計老、中、青三類市民持有這種消費(fèi)卷到某旅游景點消費(fèi)額及其概率如下表:

200元

300元

400元

500元

老年

0.4

0.3

0.2

0.1

中年

0.3

0.4

0.2

0.1

青年

0.3

0.3

0.2

0.2

某天恰好有持有這種消費(fèi)卷的老年人、中年人、青年人各一人到該旅游景點,

(Ⅰ)求這三人消費(fèi)總額大于1300元的概率;

(Ⅱ)設(shè)這三人中消費(fèi)額大于300元的人數(shù)為,求的分布列及數(shù)學(xué)期望。

 

 

查看答案和解析>>

為應(yīng)對金融危機(jī),刺激消費(fèi),某市給市民發(fā)放面額為100元的旅游消費(fèi)卷,由抽樣調(diào)查預(yù)計老、中、青三類市民持有這種消費(fèi)卷到某旅游景點消費(fèi)額及其概率如下表:
200元300元400元500元
老年0.40.30.20.1
中年0.30.40.20.1
青年0.30.30.20.2
某天恰好有持有這種消費(fèi)卷的老年人、中年人、青年人各一人到該旅游景點,
(1)求這三人恰有兩人消費(fèi)額不少于300元的概率;
(2)求這三人消費(fèi)總額大于或等于1300元的概率.

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

      20090508

      (2)設(shè),則,

      由正弦定理:,

      所以兩個正三角形的面積和,…………8分

      ……………10分

      ,,

      所以:………………………………………………………………12分

      18.解:(1);……………………6分

      (2)消費(fèi)總額為1500元的概率是:……………………7分

      消費(fèi)總額為1400元的概率是:………8分

      消費(fèi)總額為1300元的概率是:

      ,…11分

      所以消費(fèi)總額大于或等于1300元的概率是;……………………12分

      19.(1)證明:因為,所以平面

      又因為,

      平面,

      平面平面;…………………4分

      (2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

      過點E作EF垂直CD且交于點F,因為平面平面,所以平面

      所以的長為所求,………………………………………………………………………6分

      因為,所以為二面角的平面角,,

      =1,

      到平面的距離等于1;…………………………………………………………8分

      (3)連接,由平面,,得到,

      所以是二面角的平面角,

      ,…………………………………………………………………11分

      二面角大小是。……12分

      20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

      解得,所以,…………………3分

      所以,

      ,

      所以;…………………………………………………………………6分

      (2),因為,所以數(shù)列是遞增數(shù)列,…8分

      當(dāng)且僅當(dāng)時,取得最小值,

      則:

      所以,即的取值范圍是!12分

      21.解:(1)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,點的坐標(biāo)為,

      因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

      (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為

      假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

       

      …………………………………………7分

      弦長為定值,則,即,

      此時,……………………………………………………9分

      所以當(dāng)時,存在直線,截得的弦長為,

          當(dāng)時,不存在滿足條件的直線。……………………………………………12分

      22.解:(1),

      ,……2分

      因為當(dāng)時取得極大值,所以,

      所以的取值范圍是:;………………………………………………………4分

      (2)由下表:

      0

      0

      遞增

      極大值

      遞減

      極小值

      遞增

      ………………………7分

      畫出的簡圖:

      依題意得:

      解得:,

      所以函數(shù)的解析式是:

      ;……9分

      (3)對任意的實數(shù)都有

      ,

      依題意有:函數(shù)在區(qū)間

      上的最大值與最小值的差不大于,

      ………10分

      在區(qū)間上有:

      ,

      的最大值是,

      的最小值是,……13分

      所以

      的最小值是!14分

       

       


      同步練習(xí)冊答案