的最小整數(shù)解是 (A)1 (B)2 查看更多

 

題目列表(包括答案和解析)

若集合A={x|ax2-2x+1=0}有兩個不同元素.則實數(shù)a的最大整數(shù)解是( )

A.1

B.0

C.-1

D.-2.

 

查看答案和解析>>

(2009•臺州二模)若方程lnx+3x-6=0的解為x0,則關(guān)于x不等式x≥x0的最小整數(shù)解是( 。

查看答案和解析>>

不等式|x-1|+|x-2|≤3的最小整數(shù)解是(    )

A.0                   B.-1             C.1                 D.2

查看答案和解析>>

若方程lnx+3x-6=0的解為x,則關(guān)于x不等式x≥x的最小整數(shù)解是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

若方程lnx+3x-6=0的解為x0,則關(guān)于x不等式x≥x0的最小整數(shù)解是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

<noscript id="so8k1"></noscript>

    <sup id="so8k1"><small id="so8k1"></small></sup>

      2009.4

       

      1-10.CDABB   CDBDA

      11.       12. 4        13.        14.       15.  

      16.   17.

      18.解:(Ⅰ)由題意,有

      .…………………………5分

      ,得

      ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

      (Ⅱ)由,得

      .           ……………………………………………… 10分

      ,∴.      ……………………………………………… 14分

      19.解:(Ⅰ)設(shè)數(shù)列的公比為,由,.             …………………………………………………………… 4分

      ∴數(shù)列的通項公式為.      ………………………………… 6分

      (Ⅱ) ∵,    ,      ①

      .      ②         

      ①-②得: …………………12分

                   得,                           …………………14分

      20.解:(I)取中點,連接.

      分別是梯形的中位線

      ,又

      ∴面,又

      .……………………… 7分

      (II)由三視圖知,是等腰直角三角形,

           連接

           在面AC1上的射影就是,∴

          

      ∴當(dāng)的中點時,與平面所成的角

        是.           ………………………………14分

                                                     

      21.解:(Ⅰ)由題意:.

      為點M的軌跡方程.     ………………………………………… 4分

      (Ⅱ)由題易知直線l1l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

          ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

             同理RQ的方程為,求得.  ………………………… 9分

      .  ……………………………… 13分

      當(dāng)且僅當(dāng)時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

      22. 解:(Ⅰ),由題意得,

      所以                    ………………………………………………… 4分

      (Ⅱ)證明:令,,

      得:,……………………………………………… 7分

      (1)當(dāng)時,,在,即上單調(diào)遞增,此時.

                …………………………………………………………… 10分

      (2)當(dāng)時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得,

      .                        …………………………………………14分

      由 (1) 、(2)得 .

      ∴綜上所述,對于,使得成立. ………………15分

       


      同步練習(xí)冊答案