(Ⅰ)求函數(shù)的單調(diào)增區(qū)間, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=2sinx(sinx+cosx)-1.
(1)求函數(shù)f(x)的最小正周期
(2)當(dāng)x∈[0,
π6
]時(shí),求函數(shù)的最小值;
(3)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

已知函數(shù)f(x)=ax2-|x|+2a-1(a為實(shí)數(shù))(a≤
12
)

(1)若 a=1,求函數(shù)的單調(diào)增區(qū)間;
(2)設(shè)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

已知函數(shù)y=cos(
1
4
x+
π
3
)

(1)求函數(shù)的最小正周期;
(2)求函數(shù)的對稱軸及對稱中心;
(3)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

(2012•藍(lán)山縣模擬)已知函數(shù)f(x)=
12
ax2+(1-a)x-1-lnx,a∈R.
(1)若函數(shù)在區(qū)間(2,4)上存在單調(diào)遞增區(qū)間,求a的取值范圍;
(2)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

已知函數(shù)(其中

(I)求函數(shù)的值域;

(II)若函數(shù)的圖象與直線的兩個(gè)相鄰交點(diǎn)間的距離為,求函數(shù)的單調(diào)增區(qū)間.

 

查看答案和解析>>

        2009.4

         

        1-10.CDABB   CDBDA

        11.       12. 4        13.        14.       15.  

        16.   17.

        18.解:(Ⅰ)由題意,有,

        .…………………………5分

        ,得

        ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

        (Ⅱ)由,得

        .           ……………………………………………… 10分

        ,∴.      ……………………………………………… 14分

        19.解:(Ⅰ)設(shè)數(shù)列的公比為,由,.             …………………………………………………………… 4分

        ∴數(shù)列的通項(xiàng)公式為.      ………………………………… 6分

        (Ⅱ) ∵,    ,      ①

        .      ②         

        ①-②得: …………………12分

                     得,                           …………………14分

        20.解:(I)取中點(diǎn),連接.

        分別是梯形的中位線

        ,又

        ∴面,又

        .……………………… 7分

        (II)由三視圖知,是等腰直角三角形,

             連接

             在面AC1上的射影就是,∴

             ,

        ∴當(dāng)的中點(diǎn)時(shí),與平面所成的角

          是.           ………………………………14分

                                                       

        21.解:(Ⅰ)由題意:.

        為點(diǎn)M的軌跡方程.     ………………………………………… 4分

        (Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

            ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

               同理RQ的方程為,求得.  ………………………… 9分

        .  ……………………………… 13分

        當(dāng)且僅當(dāng)時(shí)取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

        22. 解:(Ⅰ),由題意得,

        所以                    ………………………………………………… 4分

        (Ⅱ)證明:令,

        得:,……………………………………………… 7分

        (1)當(dāng)時(shí),,在,即上單調(diào)遞增,此時(shí).

                  …………………………………………………………… 10分

        (2)當(dāng)時(shí),,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時(shí)只要或者即可,得,

        .                        …………………………………………14分

        由 (1) 、(2)得 .

        ∴綜上所述,對于,使得成立. ………………15分

         


        同步練習(xí)冊答案