二面角的平面角的余弦值. 查看更多

 

題目列表(包括答案和解析)

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四邊形,且AB=1,BC=2,∠ABC=60°,E為BC的中點,AA1⊥平面ABCD.
(Ⅰ)證明:平面A1AE⊥平面A1DE;
(Ⅱ)若DE=A1E,試求異面直線AE與A1D所成角的余弦值;
(Ⅲ)在(Ⅱ)的條件下,試求二面角C-A1D-E的余弦值.

查看答案和解析>>

一副三角板(如圖),其中△ABC中,AB=AC,∠BAC=90°,△DMN 中,∠MND=90°,∠D=60°,現(xiàn)將兩相等長的邊BC、MN重合,并翻折構(gòu)成四面體ABCD.CD=a
(1)當(dāng)平面ABC⊥平面BCD(圖(1))時,求直線AD與平面BCD所成角的正弦值
(2)當(dāng)將平面ABC翻折到使A到B、C、D三點的距離相等時(圖(2)),
①求證:A在平面BCD內(nèi)的射影是BD的中點;
②求二面角A-CD-B的余弦值.

查看答案和解析>>

如圖,在長方體ABCD-A1B1C1D1中,AB=4,AD=2,A1A=2,點F是棱BC的中點,點E在棱C1D1上,且D1E=λEC1(λ為實數(shù)).
(1)求二面角D1-AC-D的余弦值;
(2)當(dāng)λ=
13
時,求直線EF與平面D1AC所成角的正弦值的大小;
(3)求證:直線EF與直線EA不可能垂直.

查看答案和解析>>

如圖,三棱柱ABC-A1B1C1中,BC=2,BC1=
2
,CC1=
2
,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC1B1,E為棱AB的中點,F(xiàn)為CC1上的動點.
(Ⅰ)在線段CC1上是否存在一點F,使得EF∥平面A1BC1?若存在,確定其位置;若不存在,說明理由.
(Ⅱ)在線段CC1上是否存在一點F,使得EF⊥BB1?若存在,確定其位置;若不存在,說明理由.
( III)當(dāng)F為CC1的中點時,若AC≤CC1,且EF與平面ACC1A1所成的角的正弦值為
2
3
,求二面角C-AA1-B的余弦值.

查看答案和解析>>

精英家教網(wǎng)已知菱形ABCD與矩形BDEF所在平面互相垂直,且BD=2BF,若M為EF的中點,BD∩AC=O
(I)求證:BM∥平面AEC;
(II)求證:平面AEC⊥平面AFC;
(III)若AF與平面BDEF成60°角,求二面角A-EF-C的余弦值.

查看答案和解析>>

數(shù)   學(xué)(理科)    2009.4

一、選擇題:本大題共有10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

A

B

B

A

C

C

B

B

二、填空題:本大題共有7小題,每小題4分,共28分.

11. 1   12. 110   13. 78   14.  15.  16. 7   17.

三.解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

18.(Ⅰ)解:.……………………… 4分

,解得

所以函數(shù)的單調(diào)遞增區(qū)間為 .…………… 7分

(Ⅱ)解:由,得.故.……………… 10分

于是有 ,或,

.因,故.……………… 14分

19.(Ⅰ)解:恰好摸到兩個“心”字球的取法共有4種情形:

開心心,心開心,心心開,心心樂.

則恰好摸到2個“心”字球的概率是

.………………………………………6分

(Ⅱ)解:,

,

.…………………………………………10分

故取球次數(shù)的分布列為

1

2

3

.…………………………………………………14分

20.(Ⅰ)解:因在底面上的射影恰為B點,則⊥底面

所以就是與底面所成的角.

,故 ,

與底面所成的角是.……………………………………………3分

如圖,以A為原點建立空間直角坐標(biāo)系,則

,

,

與棱BC所成的角是.…………………………………………………7分

(Ⅱ)解:設(shè),則.于是

舍去),

則P為棱的中點,其坐標(biāo)為.…………………………………………9分

設(shè)平面的法向量為,則

,故.…………………11分

而平面的法向量是,

,

故二面角的平面角的余弦值是.………………………………14分

21.(Ⅰ)解:由題意知:,,,解得

故橢圓的方程為.…………………………………………………5分

   (Ⅱ)解:設(shè),

⑴若軸,可設(shè),因,則

,得,即

軸,可設(shè),同理可得.……………………7分

⑵當(dāng)直線的斜率存在且不為0時,設(shè)

,消去得:

.………………………………………9分

,知

,即(記為①).…………11分

,可知直線的方程為

聯(lián)立方程組,得 (記為②).……………………13分

將②代入①,化簡得

綜合⑴、⑵,可知點的軌跡方程為.………………………15分

22.(Ⅰ)證明:當(dāng)時,.令,則

遞增;若遞減,

的極(最)大值點.于是

,即.故當(dāng)時,有.………5分

(Ⅱ)解:對求導(dǎo),得

①若,,則上單調(diào)遞減,故合題意.

②若,

則必須,故當(dāng)時,上單調(diào)遞增.

③若,的對稱軸,則必須,

故當(dāng)時,上單調(diào)遞減.

綜合上述,的取值范圍是.………………………………10分

(Ⅲ)解:令.則問題等價于

        找一個使成立,故只需滿足函數(shù)的最小值即可.

        因,

故當(dāng)時,遞減;當(dāng)時,遞增.

于是,

與上述要求相矛盾,故不存在符合條件的.……………………15分

 

 


同步練習(xí)冊答案