22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分15分)

記函數(shù)

 (1)若函數(shù)處取得極值,試求的值;

(2)若函數(shù)有兩個極值點,

,試求的取值范圍;

(3)若函數(shù)對任意恒有成立,試求的取值范圍.(參考:

 

查看答案和解析>>

(本小題滿分15分)

如圖,已知橢圓=1(2≤m≤5),過其左焦點且斜率為1的直線與橢圓及直線的交點從左到右的順序為A、B、C、D,設

(Ⅰ)求的解析式;

(Ⅱ)求的最值.

 

查看答案和解析>>

(本小題滿分15分)已知函數(shù),

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)設函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.

 

 

查看答案和解析>>

本小題滿分15分)

設函數(shù)的最大值為,最小值為,其中

(1)求的值(用表示);

(2)已知角的頂點與平面直角坐標系中的原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點.求的值.

 

查看答案和解析>>

.(本小題滿分15分)已知函數(shù),,.

(1) 當,求使恒成立的的取值范圍;

(2) 設方程的兩根為(),且函數(shù)在區(qū)間上的最大值與最小值之差是8,求的值.

 

 

查看答案和解析>>

數(shù)   學(理科)    2009.4

一、選擇題:本大題共有10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

A

B

B

A

C

C

B

B

二、填空題:本大題共有7小題,每小題4分,共28分.

11. 1   12. 110   13. 78   14.  15.  16. 7   17.

三.解答題:本大題共5小題,共72分.解答應寫出文字說明、證明過程或演算步驟.

18.(Ⅰ)解:.……………………… 4分

,解得

所以函數(shù)的單調(diào)遞增區(qū)間為 .…………… 7分

(Ⅱ)解:由,得.故.……………… 10分

于是有 ,或

.因,故.……………… 14分

19.(Ⅰ)解:恰好摸到兩個“心”字球的取法共有4種情形:

開心心,心開心,心心開,心心樂.

則恰好摸到2個“心”字球的概率是

.………………………………………6分

(Ⅱ)解:,

,

.…………………………………………10分

故取球次數(shù)的分布列為

1

2

3

.…………………………………………………14分

20.(Ⅰ)解:因在底面上的射影恰為B點,則⊥底面

所以就是與底面所成的角.

,故

與底面所成的角是.……………………………………………3分

如圖,以A為原點建立空間直角坐標系,則

,

,

與棱BC所成的角是.…………………………………………………7分

(Ⅱ)解:設,則.于是

舍去),

則P為棱的中點,其坐標為.…………………………………………9分

設平面的法向量為,則

,故.…………………11分

而平面的法向量是

,

故二面角的平面角的余弦值是.………………………………14分

21.(Ⅰ)解:由題意知:,,解得

故橢圓的方程為.…………………………………………………5分

   (Ⅱ)解:設,

⑴若軸,可設,因,則

,得,即

軸,可設,同理可得.……………………7分

⑵當直線的斜率存在且不為0時,設

,消去得:

.………………………………………9分

,知

,即(記為①).…………11分

,可知直線的方程為

聯(lián)立方程組,得 (記為②).……………………13分

將②代入①,化簡得

綜合⑴、⑵,可知點的軌跡方程為.………………………15分

22.(Ⅰ)證明:當時,.令,則

,遞增;若,遞減,

的極(最)大值點.于是

,即.故當時,有.………5分

(Ⅱ)解:對求導,得

①若,則上單調(diào)遞減,故合題意.

②若,

則必須,故當時,上單調(diào)遞增.

③若的對稱軸,則必須

故當時,上單調(diào)遞減.

綜合上述,的取值范圍是.………………………………10分

(Ⅲ)解:令.則問題等價于

        找一個使成立,故只需滿足函數(shù)的最小值即可.

        因

故當時,遞減;當時,,遞增.

于是,

與上述要求相矛盾,故不存在符合條件的.……………………15分

 

 


同步練習冊答案