第Ⅱ卷 13 14 15 16 查看更多

 

題目列表(包括答案和解析)

正項數列的前n項的乘積,則數列的前n項和中的最大值是                (    )

       A.    B.    C.    D.

第Ⅱ卷(非選擇題,共90分)

查看答案和解析>>

 是定義在R上的偶函數,且在上為增函數,、是銳角三角形的兩個內角,則( 。

A.       B.

C.        D.

第Ⅱ卷(非選擇題,共90分)

 

查看答案和解析>>

 設函數,,則的值域是(    )

A.     B.     C.     D.

第II卷(非選擇題,共90分)

 

查看答案和解析>>

 已知,且,則 (     )

A.                         B.       

C.                         D.

 

第II卷(非選擇題,共60分)

 

查看答案和解析>>

若函數在區(qū)間[a,b]上的圖象為連續(xù)不斷的一條曲線,則下列說法正確的是(    )

A.若,不存在實數使得

B.若,存在且只存在一個實數使得            

C.若,有可能存在實數使得  

D.若,有可能不存在實數使得

    第Ⅱ卷(非選擇題 共90分)

 

查看答案和解析>>

一、選擇題(60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

C

B

(C

D

D

A

B

 

C

B

 

二、填空題(20分)

13.  15    14.5 15.   16.

三、解答題(70分)

17.(1)   ,∴,∴

           (5分)

(2)     

,∴,∴

                                                         (理10分)

18. (1)記“甲恰好投進兩球”為事件A,則           (6分)

(2)記“甲比乙多投進兩球”,其中“恰好甲投進兩球且乙未投進”為事件,“恰好甲投進三球且乙投進一球”為事件,根據提議,互斥,(理12分)

19.(1)                     (6分)

(2)                                               (文12分)

(3)                                     (理12分)

20.(1)設數列的公比為,則

                                                                         (文6分,理4分)

(2)由(1)可知

所以數列是一個以為首項,1為公差的等差數列

                       (文12分,理8分)

(3)∵

∴當時,,即

  當時,,即

綜上可知:時,時,       (理12分)

21. ⑴由已知

     

     所求雙曲線C的方程為;

⑵設P點的坐標為,M,N的縱坐標分別為.

 

 

    

共線

同理

              

22.

(1)由題意得:

∴在;在;在

在此處取得極小值

由①②③聯(lián)立得:

                                                         (6分)

(2)設切點Q

,

求得:,方程有三個根。

需:

故:

因此所求實數的取值范圍為:                     (理12

 

 


同步練習冊答案