(1)已知函數.如果是增函數.且的導函數存在正零點.求的值 查看更多

 

題目列表(包括答案和解析)

若函數f(x)為定義域D上單調函數,且存在區(qū)間[a,b]⊆D(其中a<b),使得當x∈[a,b]時,f(x)的取值范圍恰為[a,b],則稱函數f(x)是D上的正函數,區(qū)間[a,b]叫做等域區(qū)間.
(1)已知f(x)=x
12
是[0,+∞)上的正函數,求f(x)的等域區(qū)間;
(2)試探究是否存在實數m,使得函數g(x)=x2+m是(-∞,0)上的正函數?若存在,請求出實數m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知函數f(x)=x2,,g(x)=x-1.
(1)已知函數ψ(x)=logmx-2x,如果h(x)=
12
f(x)+ψ(x)
是增函數,且h(x)的導函數h'(x)存在正零點,求m的值.
(2)設F(x)=f(x)-tg(x)+1-t-t2,且|F(x)|在[0,1]上單調遞增,求實數t的取值范圍.
(3)試求實數p的個數,使得對于每個p,關于x的方程xf(x)=pg(x)+2p+1都有滿足|x|<2009的偶數根.

查看答案和解析>>

定義在(0,+∞)上的函數f(x),如果對任意x∈(0,+∞),恒有f(kx)=kf(x)(k≥2,k∈N*)成立,則稱f(x)為k階縮放函數.
(1)已知函數f(x)為二階縮放函數,且當x∈(1,2]時,f(x)=1+log
1
2
x
,求f(2
2
)
的值;
(2)已知函數f(x)為二階縮放函數,且當x∈(1,2]時,f(x)=
2x-x2
,求證:函數y=f(x)-x在(1,8)上無零點;
(3)已知函數f(x)為k階縮放函數,且當x∈(1,k]時,f(x)的取值范圍是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范圍.

查看答案和解析>>

已知函數f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數f(t)在D上的最小值,max{f(t)|x∈D}表示函數f(t)在D上的最大值.若存在最小正整數k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數f(x)為[a,b]上的“k階收縮函數”.
(1)已知函數f(x)=2sinx(0≤x≤
n
2
),試寫出f1(x),f2(x)的表達式,并判斷f(x)是否為[0,
n
2
]上的“k階收縮函數”,如果是,請求對應的k的值;如果不是,請說明理由;
(2)已知b>0,函數g(x)=-x3+3x2是[0,b]上的2階收縮函數,求b的取值范圍.

查看答案和解析>>

(2012•浦東新區(qū)二模)已知函數y=f(x),x∈D,如果對于定義域D內的任意實數x,對于給定的非零常數m,總存在非零常數T,恒有f(x+T)>m•f(x)成立,則稱函數f(x)是D上的m級類增周期函數,周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數f(x)是D上的m級類周期函數,周期為T.
(1)已知函數f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數,求實數a的取值范圍;
(2)已知 T=1,y=f(x)是[0,+∞)上m級類周期函數,且y=f(x)是[0,+∞)上的單調遞增函數,當x∈[0,1)時,f(x)=2x,求實數m的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知當x∈[0,4]時,函數f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數,且y=f(x)的值域為一個閉區(qū)間,求實數m的取值范圍;
(Ⅱ)是否存在實數k,使函數f(x)=coskx是R上的周期為T的T級類周期函數,若存在,求出實數k和T的值,若不存在,說明理由.

查看答案和解析>>


同步練習冊答案