依題意 查看更多

 

題目列表(包括答案和解析)

(2012•甘肅一模)(理科)某中學高一年級美術(shù)學科開設(shè)書法、繪畫、雕塑三門校本選修課,學生可選也可不選,學生是否選修哪門課互不影響.已知某學生只選修書法的概率為0.08,只選修書法和繪畫的概率是0.12,至少選修一門的概率是0.88.
(1)依題意分別計算該學生選修書法、繪畫、雕塑三門校本選修課的概率;
(2)用ξ表示該學生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

(2012•甘肅一模)(文科)某中學高一年級美術(shù)學科開設(shè)書法、繪畫、雕塑三門校本選修課,學生可選也可不選,學生是否選修哪門課互不影響.已知某學生只選修書法的概率為0.08,只選修書法和繪畫的概率是0.12,至少選修一門的概率是0.88.
(1)依題意分別計算該學生選修書法、繪畫、雕塑三門校本選修課的概率;
(2)用a表示該學生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,記“f(x)=x2+ax為R上的偶函數(shù)”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

(1)求正實數(shù)a的取值范圍;

(2)比較的大小,說明理由;

(3)求證:(n∈N*, n≥2)

【解析】第一問中,利用

解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

∴n≥2時:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>

C

[解析] 依題意得=()[x+(1-x)]=13+≥13+2=25,當且僅當,即x時取等號,選C.

查看答案和解析>>

 D

[解析] 依題意得0<a<1,于是由f(1-)>1得loga(1-)>logaa,0<1-<a,由此解得1<x<,因此不等式f(1-)>1的解集是(1,),選D.

查看答案和解析>>


同步練習冊答案