作直線.與曲線C交于A.B兩點.O是坐標(biāo)原點.設(shè) 是否存在這樣的直線.使四邊形OASB的對角線相等?若存在.求出直線的方程,若不存在.試說明理由. 查看更多

 

題目列表(包括答案和解析)

已知F1(-2,0),F(xiàn)2(2,0),點P滿足|PF1|-|PF2|=2,記點P的軌跡為E.
(1)求軌跡E的方程;
(2)若直線l過點F2且與軌跡E交于P、Q兩點.
(i)無論直線l繞點F2怎樣轉(zhuǎn)動,在x軸上總存在定點M(m,0),使MP⊥MQ恒成立,求實數(shù)m的值.
(ii)過P、Q作直線x=
1
2
的垂線PA、OB,垂足分別為A、B,記λ=
|PA|+|QB|
|AB|
,求λ的取值范圍.

查看答案和解析>>

已知F1(-2,0),F(xiàn)2(2,0),點P滿足|PF1|-|PF2|=2,記點P的軌跡為E.
(1)求軌跡E的方程;
(2)若直線l過點F2且與軌跡E交于P、Q兩點.
(i)無論直線l繞點F2怎樣轉(zhuǎn)動,在x軸上總存在定點M(m,0),使MP⊥MQ恒成立,求實數(shù)m的值.
(ii)過P、Q作直線的垂線PA、OB,垂足分別為A、B,記,求λ的取值范圍.

查看答案和解析>>

已知F1(-2,0),F(xiàn)2(2,0),點P滿足|PF1|-|PF2|=2,記點P的軌跡為E.
(1)求軌跡E的方程;
(2)若直線l過點F2且與軌跡E交于P、Q兩點.
(i)無論直線l繞點F2怎樣轉(zhuǎn)動,在x軸上總存在定點M(m,0),使MP⊥MQ恒成立,求實數(shù)m的值.
(ii)過P、Q作直線的垂線PA、OB,垂足分別為A、B,記,求λ的取值范圍.

查看答案和解析>>

已知F1(-2,0),F(xiàn)2(2,0),點P滿足|PF1|-|PF2|=2,記點P的軌跡為E.
(1)求軌跡E的方程;
(2)若直線l過點F2且與軌跡E交于P、Q兩點.
(i)無論直線l繞點F2怎樣轉(zhuǎn)動,在x軸上總存在定點M(m,0),使MP⊥MQ恒成立,求實數(shù)m的值.
(ii)過P、Q作直線的垂線PA、OB,垂足分別為A、B,記,求λ的取值范圍.

查看答案和解析>>

已知點A(-2,0)在橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上,設(shè)橢圓E與y軸正半軸的交點為B,其左焦點為F,且∠AFB=150°.
(1)求橢圓E的方程;
(2)過x軸上一點M(m,0)(m≠-2)作一條不垂直于y軸的直線l交橢圓E于C、D點.
(i)若以CD為直徑的圓恒過A點,求實數(shù)m的值;
(ii)若△ACD的重心恒在y軸的左側(cè),求實數(shù)m的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案