解:(Ⅰ)依題意.有().化簡得 查看更多

 

題目列表(包括答案和解析)

如圖,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

(1)寫出、之間的等量關系,以及、之間的等量關系;

(2)求證:);

(3)設,對所有,恒成立,求實數(shù)的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及,

第三問 

.………………………2分

因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

解:(1)依題意,有,………………4分

(2)證明:①當時,可求得,命題成立; ……………2分

②假設當時,命題成立,即有,……………………1分

則當時,由歸納假設及,

解得不合題意,舍去)

即當時,命題成立.  …………………………………………4分

綜上所述,對所有,.    ……………………………1分

(3) 

.………………………2分

因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

設函數(shù)f(x)=2x3-3(a-1)x2+1,其中a≥1.

(1)求f(x)的單調區(qū)間;

(2)討論f(x)的極值.

所以f(-1)=2是極大值,f(1)=-2是極小值.

(2)曲線方程為y=x3-3x,點A(0,16)不在曲線上.

設切點為M(x0,y0),則點M的坐標滿足y0=x03-3x0.

因f′(x0)=3(x02-1),故切線的方程為y-y0=3(x02-1)(x-x0).

注意到點A(0,16)在切線上,有16-(x03-3x0)=3(x02-1)(0-x0),

化簡得x03=-8,解得x0=-2.

所以切點為M(-2,-2),

切線方程為9x-y+16=0.

查看答案和解析>>

已知橢圓C: 的一個頂點為A(2,0),離心率為,直線與橢圓C交于不同的兩點M,N。

(1)   求橢圓C的方程

(2)   當的面積為時,求k的值。

【解析】(1)∵ ∴

(2)

,

化簡得:,解得

 

查看答案和解析>>

已知,且

(1)求的值;

(2)求的值.

【解析】本試題主要考查了二項式定理的運用,以及系數(shù)求和的賦值思想的運用。第一問中,因為,所以,可得,第二問中,因為,所以,所以,利用組合數(shù)性質可知。

解:(1)因為,所以,  ……3分

化簡可得,且,解得.    …………6分

(2),所以,

所以,

 

查看答案和解析>>

有意義時,化簡的結果是(  )

A.2x-5         B.-2x-1      C.-1  D.5-2x

查看答案和解析>>


同步練習冊答案