聯(lián)立消去得:∴求點(diǎn)P的軌跡C的方程為 6分 查看更多

 

題目列表(包括答案和解析)

如圖,直線與拋物線交于兩點(diǎn),與軸相交于點(diǎn),且.

(1)求證:點(diǎn)的坐標(biāo)為;

(2)求證:;

(3)求的面積的最小值.

【解析】設(shè)出點(diǎn)M的坐標(biāo),并把過點(diǎn)M的方程設(shè)出來.為避免對(duì)斜率不存在的情況進(jìn)行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.

(2)在第(1)問的基礎(chǔ)上,證明:即可.

(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.

 

查看答案和解析>>

已知直線某學(xué)生做如下變形,由直線與雙曲線聯(lián)立消y得形如的方程,當(dāng)A=0時(shí)該方程有一解;當(dāng)A≠0時(shí),恒成立,若該生計(jì)算過程正確,則實(shí)數(shù)m的取值范圍是            .

查看答案和解析>>

(2012•陜西三模)設(shè)動(dòng)點(diǎn)P(x,y)(x≥0)到定點(diǎn)F(
1
2
,0)
的距離比到y(tǒng)軸的距離大
1
2
.記點(diǎn)P的軌跡為曲線C.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M 在y軸的截得的弦,當(dāng)M 運(yùn)動(dòng)時(shí)弦長BD是否為定值?說明理由;
(Ⅲ)過F(
1
2
,0)
作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形面GRHS的最小值.

查看答案和解析>>

已知對(duì)任意平面向量
AB
=(x,y)
,將
AB
繞其起點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做將點(diǎn)B繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)θ角得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(1,2),點(diǎn)B(1+
2
,2-2
2
)
,將點(diǎn)B繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)
π
4
得到點(diǎn)P,求點(diǎn)P的坐標(biāo);
(2)設(shè)平面內(nèi)曲線3x2+3y2+2xy=4上的每一點(diǎn)繞坐標(biāo)原點(diǎn)O沿順時(shí)針方向旋轉(zhuǎn)
π
4
得到的點(diǎn)的軌跡是曲線C,求曲線C的方程;
(3)過(2)中曲線C的焦點(diǎn)的直線l與曲線C交于不同的兩點(diǎn)A、B,當(dāng)
OA
OB
=0
時(shí),求△AOB的面積.

查看答案和解析>>

設(shè)動(dòng)點(diǎn)P(x,y)(x≥0)到定點(diǎn)F(
1
2
,0)
的距離比它到y(tǒng)軸的距離大
1
2
,記點(diǎn)P的軌跡為曲線C,
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)圓M過A(1,0),且圓心M在P的軌跡上,EF是圓M在y軸上截得的弦,當(dāng)M運(yùn)動(dòng)時(shí)弦長|EF|是否為定值?請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案