①②數(shù)列{an}為等比例數(shù)列,③數(shù)列{bn}為等差數(shù)列.其中正確的結(jié)論是 A.①②③ B.①③ C.①② D.②③ 第Ⅱ卷 20090508 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}和{bn}滿足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a為公比的等比數(shù)列.
(Ⅰ)證明:aa+2=a1a2;
(Ⅱ)若a3n-1+2a2,證明數(shù)例{cx}是等比數(shù)例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

若有窮數(shù)列{an} 滿足條件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),則稱數(shù)列{an} 為“對稱數(shù)列”.例如,數(shù)列1,2,3,2,1與數(shù)列4,2,1,1,2,4都是“對稱數(shù)列”.
(Ⅰ)設(shè){bn}是21項的“對稱數(shù)列”,其中b1,b2,…,b11是等比數(shù)列,且b2=2,b5=16,求{bn}的所有項的和S;
(Ⅱ)設(shè){cn}是22項的“對稱數(shù)列”,其中c12,c13,…,c22是首項為22,公差為-2的等差數(shù)列,求{cn}的前n項和Tn(1≤n≤22,n∈N*).

查看答案和解析>>

若有窮數(shù)列{an} 滿足條件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),則稱數(shù)列{an} 為“對稱數(shù)列”.例如,數(shù)列1,2,3,2,1與數(shù)列4,2,1,1,2,4都是“對稱數(shù)列”.
(Ⅰ)設(shè){bn}是21項的“對稱數(shù)列”,其中b1,b2,…,b11是等比數(shù)列,且b2=2,b5=16,求{bn}的所有項的和S;
(Ⅱ)設(shè){cn}是22項的“對稱數(shù)列”,其中c12,c13,…,c22是首項為22,公差為-2的等差數(shù)列,求{cn}的前n項和Tn(1≤n≤22,n∈N*).

查看答案和解析>>

若有窮數(shù)列{an} 滿足條件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),則稱數(shù)列{an} 為“對稱數(shù)列”.例如,數(shù)列1,2,3,2,1與數(shù)列4,2,1,1,2,4都是“對稱數(shù)列”.
(Ⅰ)設(shè){bn}是21項的“對稱數(shù)列”,其中b1,b2,…,b11是等比數(shù)列,且b2=2,b5=16,求{bn}的所有項的和S;
(Ⅱ)設(shè){cn}是22項的“對稱數(shù)列”,其中c12,c13,…,c22是首項為22,公差為-2的等差數(shù)列,求{cn}的前n項和Tn(1≤n≤22,n∈N*).

查看答案和解析>>

若有窮數(shù)列{an} 滿足條件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),則稱數(shù)列{an} 為“對稱數(shù)列”.例如,數(shù)列1,2,3,2,1與數(shù)列4,2,1,1,2,4都是“對稱數(shù)列”.
(Ⅰ)設(shè){bn}是21項的“對稱數(shù)列”,其中b1,b2,…,b11是等比數(shù)列,且b2=2,b5=16,求{bn}的所有項的和S;
(Ⅱ)設(shè){cn}是22項的“對稱數(shù)列”,其中c12,c13,…,c22是首項為22,公差為-2的等差數(shù)列,求{cn}的前n項和Tn(1≤n≤22,n∈N*).

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,共40分)

1―5  CACBB        6―8  DDA

二、填空題(本大題共6小題,每小題5分,共30分)

9.                           10.

11.                         12.

13.                      14.

三、解答題:本大題共6小題共80-分。解答題應(yīng)寫出文字說明,證明過程或演算步驟。

15.(本小題共滿分13分)

解:(I)由圖知:,得A=2;

    由A+B=3,得B=1;

   

    設(shè)

將函數(shù)的圖象向左平移,得

的圖象,

                          ……………………8分

   (II)依題意:

當(dāng)

此時x的取值集合為   …………………………13分

<td id="zwxu4"><p id="zwxu4"><tbody id="zwxu4"></tbody></p></td>

      <dfn id="zwxu4"></dfn><form id="zwxu4"></form>

         (I)證明:取AC中點(diǎn)F,連結(jié)MF,BF,

      在三角形AC1C中,MN//C1C

             

         (II)設(shè)A1到平面AB1C1的距離為h,AA1⊥平面A1B1C1

             

         (III)三棱柱ABC―A1B1C1是直三棱柱,平面ABB1A1⊥平面A1B1C1,又點(diǎn)D是等腰直角三角形A1B1C1斜邊A1B1的中點(diǎn)。

      則C1D⊥A1B1

      所以,;

      平面A1B1BA內(nèi),過D作DE⊥AB1,垂足為E,連結(jié)C1E,則C1E⊥AB1;

      是二面角,A1―AB1―C1的平面角,

      在Rt

       

      所以,二面角,A1―AB1―C1的大小為   ………………14分

      17.(本小題滿分13分)

      解:(I)設(shè)在第一次更換燈棍工作中,不需要更換燈棍的概率為P1,則

                                             ………………………………4分

         (II)對該盞燈來說,在第1,2次都更換了燈棍的概率為;在第一次未更換燈棍而在第二次需要更換燈棍的概率為,故所求概率為

                ………………………………8分

         (III)的可能取值為0,1,2,3;

          某盞燈在第二次燈棍更換工作中需要更換燈棍的概率為

         

          的分布列為

         

      P

      0

      1

      2

      3

          此分布為二項分布―N(3,0.6)

                                  …………………………13分

      18.(本小題滿分13分)

          解:

         

          設(shè)M(m,4-m2),則過M點(diǎn)曲線C的切線斜率k=-2m。

                    …………………………6分

          由x=0,得

          由y=0,得

          設(shè)△AOB的面積為S,則

         

          令

          當(dāng)上為減函數(shù);

          當(dāng)上為增函數(shù);

          …………13分

      19.(本小題滿分14分)

         (I)由焦點(diǎn)F(1,0)在上,得……………………1分

      設(shè)點(diǎn)N(m,n)則 有:,      …………………………3分

      解得,                       ……………………5分

      N點(diǎn)不在拋物線C上。                    ………………………………7分

         (2)把直線方程代入拋物線方程得:

      解得!12分

      當(dāng)P與M重合時,a=1

      20.(本小題滿分13分)

          解:(I)因?yàn)?sub>,又因?yàn)楫?dāng)x=0時,f(0)=0,所以方程f(x)-x=0有實(shí)數(shù)根0。

          所以函數(shù)是的集合M中的元素。………………………………3分

         (II)假設(shè)方程f(x)-x=0存在兩個實(shí)數(shù)根不妨設(shè),根據(jù)題意存在數(shù)

              使得等式成立。

              因?yàn)?sub>

              與已知矛盾,所以方程只有一個實(shí)數(shù)根;…………8分

         (III)不妨設(shè)

          又因?yàn)?sub>為減函數(shù),

      所以

      所以

          所以

               …………………………13分

       


      同步練習(xí)冊答案