15. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)有一問(wèn)題,在半小時(shí)內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,

 如果兩人都試圖獨(dú)立地在半小時(shí)內(nèi)解決它,計(jì)算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問(wèn)題得到解決的概率。

查看答案和解析>>

(本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

(1) 求數(shù)列、的通項(xiàng)公式;

(2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時(shí),A地至B地之間的航行距離約為500海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.

(1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);

(2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長(zhǎng)為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點(diǎn),都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿分13分)兩個(gè)人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,共40分)

1―5  CACBB        6―8  DDA

二、填空題(本大題共6小題,每小題5分,共30分)

9.                           10.

11.                         12.

13.                      14.

三、解答題:本大題共6小題共80-分。解答題應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。

15.(本小題共滿分13分)

解:(I)由圖知:,得A=2;

    由A+B=3,得B=1;

   

    設(shè)

將函數(shù)的圖象向左平移,得

的圖象,

                          ……………………8分

   (II)依題意:

當(dāng)

此時(shí)x的取值集合為   …………………………13分

   (I)證明:取AC中點(diǎn)F,連結(jié)MF,BF,

在三角形AC1C中,MN//C1C

,

       

   (II)設(shè)A1到平面AB1C1的距離為h,AA1⊥平面A1B1C1

       

   (III)三棱柱ABC―A1B1C1是直三棱柱,平面ABB1A1⊥平面A1B1C1,又點(diǎn)D是等腰直角三角形A1B1C1斜邊A1B1的中點(diǎn)。

則C1D⊥A1B1

所以,;

平面A1B1BA內(nèi),過(guò)D作DE⊥AB1,垂足為E,連結(jié)C1E,則C1E⊥AB1;

是二面角,A1―AB1―C1的平面角,

在Rt

 

所以,二面角,A1―AB1―C1的大小為   ………………14分

17.(本小題滿分13分)

解:(I)設(shè)在第一次更換燈棍工作中,不需要更換燈棍的概率為P1,則

                                       ………………………………4分

   (II)對(duì)該盞燈來(lái)說(shuō),在第1,2次都更換了燈棍的概率為;在第一次未更換燈棍而在第二次需要更換燈棍的概率為,故所求概率為

          ………………………………8分

   (III)的可能取值為0,1,2,3;

    某盞燈在第二次燈棍更換工作中需要更換燈棍的概率為

   

    的分布列為

   

P

0

1

2

3

    此分布為二項(xiàng)分布―N(3,0.6)

                            …………………………13分

18.(本小題滿分13分)

    解:

   

    設(shè)M(m,4-m2),則過(guò)M點(diǎn)曲線C的切線斜率k=-2m。

              …………………………6分

    由x=0,得

    由y=0,得

    設(shè)△AOB的面積為S,則

   

    令

    當(dāng)上為減函數(shù);

    當(dāng)上為增函數(shù);

    …………13分

19.(本小題滿分14分)

   (I)由焦點(diǎn)F(1,0)在上,得……………………1分

設(shè)點(diǎn)N(m,n)則 有:,      …………………………3分

解得,                       ……………………5分

N點(diǎn)不在拋物線C上。                    ………………………………7分

   (2)把直線方程代入拋物線方程得:

解得!12分

當(dāng)P與M重合時(shí),a=1

20.(本小題滿分13分)

    解:(I)因?yàn)?sub>,又因?yàn)楫?dāng)x=0時(shí),f(0)=0,所以方程f(x)-x=0有實(shí)數(shù)根0。

    所以函數(shù)是的集合M中的元素!3分

   (II)假設(shè)方程f(x)-x=0存在兩個(gè)實(shí)數(shù)根不妨設(shè),根據(jù)題意存在數(shù)

        使得等式成立。

        因?yàn)?sub>

        與已知矛盾,所以方程只有一個(gè)實(shí)數(shù)根;…………8分

   (III)不妨設(shè)

    又因?yàn)?sub>為減函數(shù),

所以

所以

    所以

         …………………………13分

 


同步練習(xí)冊(cè)答案