解析:由消去得.直線的斜率為.∴填4. 查看更多

 

題目列表(包括答案和解析)

已知{}是等差數(shù)列,,,則過點,的直線的斜率為

A.4                B.               C.             D.

查看答案和解析>>

已知等差數(shù)列{an,}的前n項和為sn,且S2=10,S5=55,則過點P(n,),Q(n+2,)(n∈N+*)的直線的斜率為

A、4        B、3       C、2         D、1

查看答案和解析>>

設不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.

(Ⅰ)求三角形ABC頂點C的軌跡方程;

(Ⅱ)設頂點C的軌跡為D,已知直線過點(0,1)并且與曲線D交于P、N兩點,若O為坐標原點,滿足OP⊥ON,求直線的方程.

【解析】

第一問因為設C(x,y)(

……3分

∵M是不等邊三解形ABC的外心,∴|MA|=|MC|,即(2)

由(1)(2)得.所以三角形頂點C的軌跡方程為,.…6分

第二問直線l的方程為y=kx+1

y。 ∵直線l與曲線D交于P、N兩點,∴△=,

,∴

得到直線方程。

 

查看答案和解析>>

設拋物線>0)的焦點為,準線為,上一點,已知以為圓心,為半徑的圓,兩點.

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,三點在同一條直線上,直線平行,且只有一個公共點,求坐標原點到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關系、點到直線距離公式、線線平行等基礎知識,考查數(shù)形結(jié)合思想和運算求解能力.

【解析】設準線軸的焦點為E,圓F的半徑為,

則|FE|==,E是BD的中點,

(Ⅰ) ∵,∴=,|BD|=,

設A(),根據(jù)拋物線定義得,|FA|=

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,三點在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-,

∴直線的方程為:,∴原點到直線的距離=

設直線的方程為:,代入得,

只有一個公共點, ∴=,∴,

∴直線的方程為:,∴原點到直線的距離=,

∴坐標原點到,距離的比值為3.

解析2由對稱性設,則

      點關于點對稱得:

     得:,直線

     切點

     直線

坐標原點到距離的比值為

 

查看答案和解析>>

某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應數(shù)據(jù):
x 2 4 5 6 8
y 30 40 50 60 70
由散點圖判斷y與x具有線性相關關系,計算可得回歸直線的斜率是7,則回歸直線的方程是( 。
A、
y
=7x+15
B、
y
=7x+5
C、
y
=7x+50
D、
y
=7x+45

查看答案和解析>>


同步練習冊答案