知.∴即. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)學(xué)公式,數(shù)學(xué)公式φ,sinφ),函數(shù)數(shù)學(xué)公式φ (其中數(shù)學(xué)公式的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)(即函數(shù)取得最大值的點(diǎn))為P(數(shù)學(xué)公式,2),在原點(diǎn)右側(cè)與x軸的第一個(gè)交點(diǎn)為Q(數(shù)學(xué)公式,0).
(1)求函數(shù)f(x)的表達(dá)式;
(2判斷函數(shù)f(x)在區(qū)間數(shù)學(xué)公式上是否存在對(duì)稱軸,存在求出方程;否則說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax-a-x,(a>0且a≠1),
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)判斷f(x)的單調(diào)性,并說(shuō)明理由.(不需要嚴(yán)格的定義證明,只要說(shuō)出理由即可)
(3)若a=
12
,方程f(x)=x+1是否有根?如果有根x0,請(qǐng)求出一個(gè)長(zhǎng)度為1的區(qū)間(a,b),使x0∈(a,b);如果沒(méi)有,請(qǐng)說(shuō)明理由.(注:區(qū)間(a,b)的長(zhǎng)度=b-a)

查看答案和解析>>

已知常數(shù)a≠0,數(shù)列{an}前n項(xiàng)和為Sn,且Sn=an2-(a-1)n
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列;
(Ⅱ)若an≤2n3-13n2+11n+1對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若a=
1
2
,數(shù)列{cn}滿足:cn=
an
an+2012
,對(duì)于任意給定的正整數(shù)k,是否存在p,q∈N*,使得ck=cp•cq?若存在,求出p,q的值(只要寫(xiě)出一組即可);若不存在說(shuō)明理由.

查看答案和解析>>

已知常數(shù)a≠0,數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且an=
Sn
n
+a(n-1)

(1)求證:數(shù)列{an}為等差數(shù)列;
(2)若bn=3n+(-1)nan,且數(shù)列{bn}是單調(diào)遞增數(shù)列,求實(shí)數(shù)a的取值范圍;
(3)若a=
1
2
,數(shù)列{cn}滿足:cn=
an
an+2011
,對(duì)于任意給定的正整數(shù)k,是否存在p,q∈N*,使ck=cp•cq?若存在,求p,q的值(只要寫(xiě)出一組即可);若不存在,說(shuō)明理由.

查看答案和解析>>

已知:函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}對(duì)n≥2,n∈N總有an=f(
1
an-1
),a1=1
;
(1)求{an}的通項(xiàng)公式.
(2)求和:Sn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1
(3)若數(shù)列{bn}滿足:①{bn}為{
1
an
}
的子數(shù)列(即{bn}中的每一項(xiàng)都是{
1
an
}
的項(xiàng),且按在{
1
an
}
中的順序排列)②{bn}為無(wú)窮等比數(shù)列,它的各項(xiàng)和為
1
2
.這樣的數(shù)列是否存在?若存在,求出所有符合條件的數(shù)列{bn},寫(xiě)出它的通項(xiàng)公式,并證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案