9.若則a的值是 ( )A. -2 B. -1 C. 1 D. 2 查看更多

 

題目列表(包括答案和解析)

a=(2,-1),b=(λ,1),若ab的夾角為鈍角,則實數(shù)λ的取值范圍是

[  ]

A

B

C.()

D(2,+∞)

查看答案和解析>>

a=(-2,-1),b=(λ,1),若ab的夾角為鈍角,則實數(shù)λ的取值范圍是

[  ]

A.
B.
C.()
D.(2,+∞)

查看答案和解析>>

的值是

[  ]

A.1

B.0

C.-1

D.-2

查看答案和解析>>

若點A關于軸的對稱點是B,則的值依次是(    )

A.1,-4,9            B.2,-5,-8      C.-3,-5,8          D.2,5,8

 

查看答案和解析>>

若a=(2+)-1,b=(2-)-1,則(a+1)-2+(b+1)-2的值是

[  ]
A.

1

B.

C.

D.

查看答案和解析>>

YC一、選擇題:CDBBA,  CBDDB,  DB 

二、填空題:13. ;  14.3   15.76   16.(1,e);e

三、解答題:

17.解:(1)f(x)=-3x2+6x+9                        …………2分

   令 f(x)<0,解得x<-1或x>3。                   …………4分

   *函數(shù)f(x)的單調(diào)遞減區(qū)間為(-。   …………5分

(2)f(-2)=2+a ,     f(2)=22+a

  f(2)>f(―2)

在(―1,3)上f(x)>0    f(x)在[―1,2]上單調(diào)遞增。

又f(x)在[―2,1]上單調(diào)遞減。              …………8分

∴f2)和f(-1)分別是f(x)在[―2,2]上的最大值和最小值。

于是有  22+a=20 , 解得a=-2

故f(x)=―x3+3x2+9x-2                        …………10分

 

∴f(-1)=-7

即f(x)在[―2,2]上的最小值為-7 。         …………12分

18. 用表示一天之內(nèi)第個部件需要調(diào)整的事件,,則                ……………………1分

    以表示一天之內(nèi)需要調(diào)整的部件數(shù),則

  (Ⅰ)……4分

  (Ⅱ)………7分

  (Ⅲ)              ……………………8分

    …………9分

                     ……………………10分

的分布列為

0

1

2

3

p

0.504

0.398

0.092

0.006

  …………12分

19.(本小題滿分12分)

解: (I)法一:取CC1的中點F, 連接AF, BF, 則AF∥C1D.

∠BAF為異面直線AB與C1D所成的角或其補角.……(1分)

∵△ABC為等腰直角三角形,

AC=2, ∴AB=2.又∵CC1=2, ∴AF=BF=

∴即異面直線AB與C1D所成的角為(4分)

法二:以C為坐標原點,CB,CA,CC1分別為x軸,y軸,z軸建立空間直角坐標系,則A(0,2,0),B(2,0,0),C1(0,0,2),D(0,2,1),∴=(2,-2,0),=(0,2,-1).

由于異面直線AB與C1D所成的角為向量的夾角或其補角.……(1分)

的夾角為θ,

,即異面直線AB與C1D

所成的角為…………(4分)

 

 

 

 

 

 

 

 

在三棱錐D―B1C1E中,

點C1到平面DB1E的距離為,

B1E=, DE=, 又B1E⊥DE,

∴△DB1E的面積為

∴三棱錐C1―DB1E的體積為1.

…………(10分)

設點D到平面的距離為d,

在△中, B1C1=2, B1E=C1E=,

∴△B1C1E的面積為

, 即點D到平面的距離為.………(12分)

 

20.解:(I)由已知得:a2=  ,a3=   a4= 。        …………4分

(2)猜想a=。                                 …………6分

下面用數(shù)學歸納法證明:略。                             …………12分

21.本小題滿分14分

    解:(I)設該學生從家出發(fā),先乘船渡河到達公路上某一點P(x,0) (0≤x≤d),再乘公交車去學校,所用的時間為t,則.……3分

        令……………………………………………………5分

        且當…………………………………………………6分

        當……………………………………………………7分

        當時,所用的時間最短,最短時間為:

.………………………………9分

答:當d=2a時,該學生從家出發(fā)到達學校所用的最短時間是.

(II)由(I)的討論可知,當d=上的減函數(shù),所以當時,

即該學生直接乘船渡河到達公路上學校,所用的時間最短.……………………12分

最短的時間為………………………………………………14分

答:當時,該學生從家出發(fā)到達學校所用的最短時間是.

22.(1),由已知在[0,1]上大于等于0,在[1,2]上小于等于0.∴x=1為極大值點,

      …………4分

   (2)由,有三個相異實根,

                       …………8分

   (3)在[1,2]上為減函數(shù),∴最大值為,∴只有上恒成立即可

恒成立,又,

的最大值為-2,                    …………12分

 

 

 


同步練習冊答案