5.函數(shù)f(x)=x3-3x+1在閉區(qū)間上的最大值.最小值分別是A.1.-1 B.1.-17 C.3.-17 D.9.-19 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值、最小值分別是(    )

A.1,-1                          B.1,-17

C.3,-17                        D.9,-19

查看答案和解析>>

函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值、最小值分別是(    )

A.1、-1                                         B.1、-17

C.3、-17                                        D.9、-19

查看答案和解析>>

函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值、最小值分別是

A.1,-1                                                           B.1,-17

C.3,-17                                                         D.9,-19

查看答案和解析>>

54、函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值、最小值分別是
3,-17

查看答案和解析>>

7、函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值、最小值分別是( 。

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

B

D

C

C

D

B

A

A

B

C

 

二、填空題:

13.2x    14. x=-1    15.k2=2.143  沒有   16.(-∞,-3]

三、解答題:

17.(1)z=1+i    |z|=    (2分)

(2)a=0,b=1             (4分)

18.綜合法、分析法均可(略)

19.(1)依題意有:解得a=1,b=-3(3分)

  (2)f(x)=x3-3x   f′(x)=3x2-3

當f′(x)>0,即x>1或x<-1,∴單調遞增區(qū)間為(-∞,-1),(1,+∞)

當f′(x)>0,-1<x<1,∴單調遞減區(qū)間為(-1,1)                   (5分)

20.(1)a1=,a2=,a3=,a4=       (2分)

(2)an=                         (3分)

(3)Sn=1-                    (5分)

21.解:依題意,直線斜率顯然存在,設直線斜率為k,則直線的方程為:y+1=kx

拋物線y=-與直線相交于A、B兩點

x2+2kx-2=0,∴△=4k2+8>0,

設A(x1,x2),B(x2,y2) 則x1+x2=-2k

∵kOA+KOB=1     ∴

即x1+x2=-2=-2k∴k=1

22.(1)a=1,b=3

  (2)∵f(x)=x3+3x2在[m,m+1]上單調遞增

     ∴f′(x)=3x2+6x≥0,在[m,m+1]上

     ∵3x2+6x≥0, ∴x≥0或x≤-2

     ∴m+1≤-2或m≥0即m≤-3或m≥0

     ∴m的取值范圍是{m|m≤-3或m≥0}

 


同步練習冊答案