(Ⅱ)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Sn=(cn+).寫出Sn表達(dá)式.并證明你的結(jié)論, 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)y=f(x)在x=
t+2
2
處取得最小值-
t2
4
(t>0),f(1)=0
(1)求y=f(x)的表達(dá)式;
(2)若任意實(shí)數(shù)x都滿足f(x)•g(x)+anx+bn=xn+1(g(x)為多項(xiàng)式,n∈N+),試用t表示an和bn
(3)設(shè)圓Cn的方程(x-an2+(y-bn2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn,Sn

查看答案和解析>>

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
1
2
)x
的圖象上.
(1)若數(shù)列{an}是首項(xiàng)為1,公差也為1的等差數(shù)列,求{bn}的通項(xiàng)公式;
(2)對(duì)(1)中的數(shù)列{an}和{bn},過點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍成的三角形面積為cn,試證明:對(duì)一切正整數(shù)n,cn
9
8
;
(3)對(duì)(1)中的數(shù)列{an},對(duì)每個(gè)正整數(shù)k,在ak與ak+1之間插入3k-1個(gè)3,得到一個(gè)新的數(shù)列{dn},問a5是數(shù)列{dn}中的第幾項(xiàng).若設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試求S100的值.

查看答案和解析>>

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
12
)x
圖象上.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)設(shè)an=n(n為正整數(shù)),過點(diǎn)Pn,Pn+1的直線與兩坐標(biāo)軸所圍成的三角形面積為cn,試求最小的實(shí)數(shù)t,使cn≤t對(duì)一切正整數(shù)n恒成立;
(Ⅲ)對(duì)(Ⅱ)中的數(shù)列{an},對(duì)每個(gè)正整數(shù)k,在ak與ak+1之間插入3k-1個(gè)3,得到一個(gè)新的數(shù)列{dn},設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試探究2008是否數(shù)列{Sn}中的某一項(xiàng),寫出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

已知二次函數(shù)y=f(x)在x=處取得最小值-(t>0),f(1)=0.

(1)求y=f(x)的表達(dá)式;?

(2)若任意實(shí)數(shù)x都滿足等式f(x)·g(x)+anx+bn=xn+1,(g(x)為多項(xiàng)式,n∈N),試用t表示anbn;?

(3)設(shè)圓Cn的方程是(x-an)2+(y-bn)2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn,Sn.

查看答案和解析>>

已知二次函數(shù)y=f(x)在x=處取得最小值- (t>0),  f(1)=0.

y=f(x)的表達(dá)式;

若任意實(shí)數(shù)x都滿足等式f(xg(x)+anx+bn=xn+1g(x)]為多項(xiàng)式,n∈N*),試用t表示anbn;

設(shè)圓Cn的方程為(xan)2+(ybn)2=rn2,圓CnCn+1外切(n=1,2,3,…);{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn、Sn.

查看答案和解析>>


同步練習(xí)冊(cè)答案