當(dāng)=3時.函數(shù)上不單調(diào)遞增. 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=x-
alnxx
,其中a為常數(shù).
(1)證明:對任意a∈R,函數(shù)y=f(x)圖象恒過定點(diǎn);
(2)當(dāng)a=1時,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求實(shí)數(shù)b的取值范圍;
(3)若對任意a∈[m,0)時,函數(shù)y=f(x)在定義域上恒單調(diào)遞增,求m的最小值.

查看答案和解析>>

函數(shù)f(x)=x-
alnx
x
,其中a為常數(shù).
(1)證明:對任意a∈R,函數(shù)y=f(x)圖象恒過定點(diǎn);
(2)當(dāng)a=1時,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求實(shí)數(shù)b的取值范圍;
(3)若對任意a∈[m,0)時,函數(shù)y=f(x)在定義域上恒單調(diào)遞增,求m的最小值.

查看答案和解析>>

函數(shù),其中a為常數(shù).

(1)證明:對任意a∈R,函數(shù)y=f(x)圖像恒過定點(diǎn);

(2)當(dāng)a=1時,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求實(shí)數(shù)b的取值范圍;

(3)若對任意a∈[m,0)時,函數(shù)y=f(x)在定義域上恒單調(diào)遞增,求m的最小值.

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx+
1-x
ax
,a
>0
(1)若f(x)在[2,+∞﹚上單調(diào)遞增,求a的取值范圍;
(2)求f(x)在區(qū)間﹙0,1]上的最小值;   
(3)當(dāng)a=2時,方程f(x)-m=0在[
1
e
,e]上有兩個不同的根,求m的范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x>0時,f(x)>1,且對任意x,y∈R,都有f(x+y)=f(x)•f(y),且f(2)=4.
(1)求f(0),f(1)的值;
(2)證明:f(x)在R上為單調(diào)遞增函數(shù);
(3)若有不等式f(x)•f(1+
1x
)<2
成立,求x的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案