當n ≥ 2時.cn = Sn?Sn?1.所以2Sn = Sn?Sn?1 +. 查看更多

 

題目列表(包括答案和解析)

對n∈N*,不等式
x>0
y>0
y≤-nx+2n
所表示的平面區(qū)域為Dn,把Dn內(nèi)的整點(橫坐標與縱坐標均為整數(shù)的點)按其到原點的距離從近到遠排成點列:(x1,y1),(x2,y2),(x3,y3),…,(xn,yn).
(1)求xn,yn;
(2)數(shù)列{an}滿足a1=x1且n≥2時,an=yn(
1
2y1
+
1
2y2
+
1
2y3
+…+
1
2yn
)
,求數(shù)列{an}的前n項和Sn;
(3)設(shè)c1=1,當n≥2時,cn=lg[2
y
2
_
•(1-
1
y
2
2
)•(1-
1
y
2
3
)•(1-
1
y
2
4
)•…•(1-
1
y
2
n
)]
,且數(shù)列{cn}的前n項和Tn,求T99

查看答案和解析>>

已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=2x-2,數(shù)列{an}的前n項和為Sn,點Pn(n,Sn)均在函數(shù)y=f(x)的圖象上.若bn=
1
2
(an+3)
(1)當n≥2時,試比較bn+12bn的大。
(2)記cn=
1
bn
(n∈N*),試證c1+c2+…+c400<39.

查看答案和解析>>

已知等差數(shù)列{an}的各項均為正整數(shù),a1=1,前n項和為Sn,又在等比數(shù)列{bn}中,b1=2,b2S2=16,且當n≥2時,有ban=4ban-1成立,n∈N*
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設(shè)cn=
6bn
b
2
n
-1
,證明:c1+c2+…+cn
4
5
(9-
8
2n
)

查看答案和解析>>

已知曲線C:xy-4x+4=0,數(shù)列{an}的首項a1=4,且當n≥2時,點(an-1,an)恒在曲線C上,數(shù)列{bn}滿足bn=
12-an

(1)試判斷數(shù)列{bn}是否是等差數(shù)列?并說明理由;
(2)求數(shù)列{an}和{bn}的通項公式;
(3)設(shè)數(shù)列{cn}滿足anbn2cn=1,試比較數(shù)列{cn}的前n項和Sn與2的大。

查看答案和解析>>

已知曲線C:xy-4x+4=0,數(shù)列{an}的首項a1=4,且當n≥2時,點(an-1,an)恒在曲線C上,數(shù)列{bn}滿足數(shù)學(xué)公式
(1)試判斷數(shù)列{bn}是否是等差數(shù)列?并說明理由;
(2)求數(shù)列{an}和{bn}的通項公式;
(3)設(shè)數(shù)列{cn}滿足anbn2cn=1,試比較數(shù)列{cn}的前n項和Sn與2的大。

查看答案和解析>>


同步練習冊答案