題目列表(包括答案和解析)
6 |
y2 |
4 |
x2 |
12 |
6 |
6 |
2 |
10 |
橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過(guò)點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說(shuō)明理由.
注意事項(xiàng):
1.本試卷滿分150分,考試時(shí)間120分鐘.
2.答卷前,考生務(wù)必將自己的學(xué)校、班級(jí)、姓名等寫(xiě)在三相應(yīng)的位置.
3.本卷為答題卷,要求將所有試題答案或解答寫(xiě)在答題卷指定位置上.
4.請(qǐng)用
考 生 填 寫(xiě) 座 位
號(hào) 碼 的 末 兩 位
題 號(hào)
一
二
三
四
17
18
19
20
21
22
23
得 分
一.選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的;每小題選出答案后,請(qǐng)用2B鉛筆把就機(jī)讀卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào).)
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
C
B
C
D
C
C
B
D
B
A
A
得分
評(píng)卷人
二.填空題(請(qǐng)把答案填在對(duì)應(yīng)題號(hào)的橫線上)
13. . 14..
15.. 16. .
三.解答題(本大題共5小題,共64分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.請(qǐng)將答題的過(guò)程寫(xiě)在答題卷中指定的位置.)
17.( 本題滿分12分)
解:(Ⅰ)∵,∴ (3分),又∵ 是鈍角,
∴ (或);...............6分
(Ⅱ)由余弦定理得,,..........9分
∴ .................12分,
18.(本題滿分12分)
解:(Ⅰ)設(shè)兩個(gè)紅球?yàn)?sub>,三個(gè)白球?yàn)?sub>,從中任意選取2個(gè)球,所有可能的結(jié)果如下:(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),()共有20種,………………………………………………………(5分)
其中紅球、白球都有的結(jié)果是(),(),(),(),(),(),(),(),(),(),(),()共有12種,
所以紅球、白球都有的概率為;…(8分)
(Ⅱ)∵“紅球個(gè)數(shù)不少于白球個(gè)數(shù)”包含兩類(lèi):兩紅,一紅一白,
∴由(Ⅰ)知中獎(jiǎng)的概率為.……………………(12分)
19.(本題滿分12分)
證明:(Ⅰ)∵ ∥,
又,,
∴ ∥;........4分
(Ⅱ)在三棱柱中,
∵ ,
∴ 四邊形,,都是矩形,
又 ∵ ,,,
∴ ,又 ∵ 為中點(diǎn),
在中,,同理,.
∴ ,∴ ,.....8分
在中,,
在中,,
∴ ,∴ .....10分
又 ,
∴ ...........12分
解法二:(Ⅱ)以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,設(shè),,,(6分),則 ,,, ∴ ,
∴,∴(8分),
∴ ,
∴ ,∴(10分)
又 ,∴ .....12分
20.(本題滿分14分)
解;(Ⅰ)設(shè)圓:....①,將和兩點(diǎn)坐標(biāo)代入①得,
........................②(2分)
又 ∵ 圓心在直線上,則 ...........③(3分)
聯(lián)立②、③解之(4分),將代入中,得 ,
故 圓的方程為 (5分).
(Ⅱ)∵直線與的傾斜角互補(bǔ),又點(diǎn)在圓上,且為圓上相異兩點(diǎn),∴ 它們的傾斜角都不為,∴它們的斜率互為相反數(shù)(6分),
設(shè)直線的方程為 ,則直線的方程為 (7分),
聯(lián)立 ,.............(9分)
(或 (9分))
解之:, ,(11分),
(或 解之,(11分))
同理可得,,(12分),
(或 (12分))
∴ ............14分
(或 ...........14分)
21.(本題滿分14分)
解:(Ⅰ)當(dāng)=9時(shí)
則......2分
令
解得:或........3分
故函數(shù)在區(qū)間(-,-1)上是增函數(shù),
在區(qū)間(3,+)上也是增函數(shù)...5分
(Ⅱ)
函數(shù)在(-,+)上為增函數(shù),∴對(duì)于,0恒成立,
故:=36-120,解得:3.........8分
所以3時(shí),函數(shù)在(-,+)上為增函數(shù).......9分
。á螅┰冢á颍l件下函數(shù)在(-,+)上為增函數(shù),所以, 函數(shù)在區(qū)間上是增函數(shù),故有:
,∵,∴,從而方程x=至少有兩個(gè)不相等的實(shí)數(shù)根,即方程 至少有兩個(gè)不相等的實(shí)數(shù)根..............11分
又方程有一根為0,故:方程至少有一個(gè)不為0的根.
∴,解得:且0............13分
又∵3
∴ 3............14分
四.選考題(從下列兩道解答題中任選一道作答,作答時(shí),請(qǐng)注明題號(hào);若多做,則按首做題計(jì)入總分,滿分10分; 請(qǐng)將答題的過(guò)程寫(xiě)在答題卷中指定的位置)
你選做_______題(請(qǐng)?jiān)跈M線上注明題號(hào))
解(或證明):
22. 證明:∵是的切線,直線是的割線
∴ ,(2分)
又 ∵ ,∴,∴ (5分),
∵ ,
∴ △與△兩邊對(duì)應(yīng)成比例,且?jiàn)A角相等(7分),
∴ △∽△(8分)
∴ (10分).
23. 解:(Ⅰ)直線的參數(shù)方程是,即 ..5分
(Ⅱ)設(shè),則,
∵,(7分),
∴ ,即圓的極坐標(biāo)方程為
..........10分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com