題目列表(包括答案和解析)
(本題滿分12分)探究函數的最小值,并確定取得最小值時x的值. 列表如下, 請觀察表中y值隨x值變化的特點,完成以下的問題.
x | … | 0.25 | 0.5 | 0.75 | 1 | 1.1 | 1.2 | 1.5 | 2 | 3 | 5 | … |
y | … | 8.063 | 4.25 | 3.229 | 3 | 3.028 | 3.081 | 3.583 | 5 | 9.667 | 25.4 | … |
x | … | 0.25 | 0.5 | 0.75 | 1 | 1.1 | 1.2 | 1.5 | 2 | 3 | 5 | … |
y | … | 8.063 | 4.25 | 3.229 | 3 | 3.028 | 3.081 | 3.583 | 5 | 9.667 | 25.4 | … |
(本題滿分15分)由于衛(wèi)生的要求游泳池要經常換水(進一些干凈的水同時放掉一些臟水), 游泳池的水深經常變化,已知泰州某浴場的水深(米)是時間,(單位小時)的函數,記作,下表是某日各時的水深數據
t(時) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 2 5 | 2 0 | 15 | 20 | 249 | 2 | 151 | 199 | 2 5 |
經長期觀測的曲線可近似地看成函數
(Ⅰ)根據以上數據,求出函數的最小正周期T,振幅A及函數表達式;
(Ⅱ)依據規(guī)定,當水深大于2米時才對游泳愛好者開放,請依據(1)的結論,判斷一天內的上午8 00至晚上20 00之間,有多少時間可供游泳愛好者進行運動
(本小題滿分12分)
已知點,過點作拋物線的切線,切點在第二象限,如圖.
(Ⅰ)求切點的縱坐標;
(Ⅱ)若離心率為的橢圓 恰好經過切點,設切線交橢圓的另一點為,記切線的斜率分別為,若,求橢圓方程.
21(本小題滿分12分)
已知函數 .
(1)討論函數的單調性;
(2)當時,恒成立,求實數的取值范圍;
(3)證明:.
22.選修4-1:幾何證明選講
如圖,是圓的直徑,是弦,的平分線交圓于點,,交的延長線于點,交于點。
(1)求證:是圓的切線;
(2)若,求的值。
23.選修4—4:坐標系與參數方程
在平面直角坐標系中,直線過點且傾斜角為,以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線與曲線相交于兩點;
(1)若,求直線的傾斜角的取值范圍;
(2)求弦最短時直線的參數方程。
24. 選修4-5 不等式選講
已知函數
(I)試求的值域;
(II)設,若對,恒有成立,試求實數a的取值范圍。
(21) (本小題滿分12分)
已知函數的圖象過點(-1,-6),且函數的圖象關于y軸對稱.
(Ⅰ)求m、n的值及函數y=f(x)的單調區(qū)間;
(Ⅱ)若a>0,求函數y=f(x)在區(qū)間(a-1,a+1)內的極值.
一.選擇題:
1
2
3
4
5
6
7
8
9
10
11
12
B
D
A
D
C
D
A
C
B
A
C
B
二.填空題:
13. 7 ;14.;15. ;16①②③④
三.解答題:
18. 記第一、二、三次射擊命中目標分別為事件A,B,C三次均未命中目標的事件為D.依題意. 設在處擊中目標的概率為,則,由
時,所以,, 2分 ,
,,.
5 分
(Ⅰ)由于各次射擊都是獨立的,所以該射手在三次射擊擊中目標的概率為
,
=. 8分
(Ⅱ)依題意,設射手甲得分為,則,,
,,所以的分布列為
0
1
2
3
所以。 12分
20. (Ⅰ)證明:連結交于點,連結.
在正三棱柱中,四邊形是平行四邊形,
∴.
∵,
∴∥. ………………………2分
∵平面,平面,
∴∥平面. …………………………4分
(Ⅱ)過點作交于,過點作交于,連結.
∵平面平面,平面,平面平面,
∴平面.
∴是在平面內的射影.
∴.
∴是二面角的平面角.
在直角三角形中,.
同理可求: .
∴.
∵,
∴. …………………………12分
21.(Ⅰ),令,解得或,1分
當時,,為增函數;當時,為減函數;當時,為增函數。4分 當時,取得極大值為-4,當時,取處極小值為!6分
(Ⅱ)設,在上恒成立.
,,若,顯然。 8分 若,
,令,解得,或,當時,
,當時,.10分
當時,.
即,解不等式得,,當時,
滿足題意.綜上所述的范圍為…………...12分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com