題目列表(包括答案和解析)
(本小題滿分分)某學校高三年級有學生1000名,經(jīng)調查研究,其中750名同學經(jīng)常參加體育鍛煉(稱為A類同學),另外250名同學不經(jīng)常參加體育鍛煉(稱為B類同學),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該年級的學生中共抽查100名同學.
(Ⅰ)求甲、乙兩同學都被抽到的概率,其中甲為A類同學,乙為B類同學;
(Ⅱ) 測得該年級所抽查的100名同學身高(單位:厘米) 頻率分布直方圖如右圖:
(ⅰ) 統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值為165)作為代表.據(jù)此,計算這100名學生身高數(shù)據(jù)的期望及標準差(精確到0.1);
(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,據(jù)此,估計該年級身高在范圍中的學生的人數(shù).
(Ⅲ) 如果以身高達170cm作為達標的標準,對抽取的100名學生,得到下列聯(lián)表:
體育鍛煉與身高達標2×2列聯(lián)表
| 身高達標 | 身高不達標 | 總計 |
積極參加體育鍛煉 | 40 | | |
不積極參加體育鍛煉 | | 15 | |
總計 | | | 100 |
P(Kk) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(本小題滿分12分)
哈爾濱冰雪大世界每年冬天都會吸引大批游客,現(xiàn)準備在景區(qū)內開設經(jīng)營熱飲等食品的店鋪若干.根據(jù)以往對500名40歲以下(含40歲)人員和500名40歲以上人員的統(tǒng)計調查,有如下一系列數(shù)據(jù):40歲以下(含40歲)人員購買熱飲等食品的有260人,不購買熱飲食品的有240人;40歲以上人員購買熱飲等食品的有220人,不購買熱飲等食品的有280人,請根據(jù)以上數(shù)據(jù)作出22列聯(lián)表,并運用獨立性檢驗思想,判斷購買熱飲等食品與年齡(按上述統(tǒng)計中的年齡分類方式)是否有關系?
注:要求達到99. 9%的把握才能認定為有關系.
s
(本小題滿分12分)
哈爾濱冰雪大世界每年冬天都會吸引大批游客,現(xiàn)準備在景區(qū)內開設經(jīng)營熱飲等食品的店鋪若干。根據(jù)以往對500名40歲以下(含40歲)人員和500名40歲以上人員的統(tǒng)計調查,有如下一系列數(shù)據(jù):40歲以下(含40歲)人員購買熱飲等食品的有260人,不購買熱飲食品的有240人;40歲以上人員購買熱飲等食品的有220人,不購買熱飲等食品的有280人,請根據(jù)以上數(shù)據(jù)作出22列聯(lián)表,并運用獨立性檢驗思想,判斷購買熱飲等食品與年齡(按上述統(tǒng)計中的年齡分類方式)是否有關系?
注:要求達到99.9%的把握才能認定為有關系。
(本題滿分12分)
我國是水資源比較貧乏的國家之一,各地采用價格調控等手段以達到節(jié)約用水的目的。某市用水收費標準是:水費=基本費+超額費+定額損耗費,且有如下三條規(guī)定:
①若每月用水量不超過最低限量立方米時,只付基本費9元和每戶每月定額損耗費元;
②若每月用水量超過立方米時,除了付基本費9元和定額損耗費外,超過部分每立方米付元的超額費;
③每戶每月定額損耗費不超過5元。
(1) 求每戶每月水費(元)與月用水量(立方米)的函數(shù)關系式;
(2) 該市一家庭今年第一季度每月的用水量和支付的費用如下表所示:
月份 |
用水量(立方米) |
水費(元) |
一 |
4 |
17 |
二 |
5 |
23 |
三 |
2.5 |
11 |
試分析該家庭今年一、二、三各月份的用水量是否超過最低限量,并求的值。
一.選擇題:
1
2
3
4
5
6
7
8
9
10
11
12
B
B
A
D
C
D
C
C
D
C
C
B
二.填空題:
13. 1600 ;14.7;15. 14;16①②③④
三.解答題:
17.(本題滿分10分)(Ⅰ)
(Ⅱ)
所以的最大值為
18.記小張能過第一關的事件為A,直接去闖第二關能通過的事件為B,直接去闖第三關能通過的事件為C. 2分
則P(A)=0.8,P(B)=0.75,P(C)=0.5
(Ⅰ)小張在第二關被淘汰的概率為P(A?)=P(A)?(1-P(B))
=0.8×0.25=0.2.
答:小張在第二關被淘汰的概率為0.2 7分
(Ⅱ)小張不能參加決賽的概率為P=1-P(A?B?C)=1-0.8×0.75×0.5=0.7
答:小張不能參加決賽的概率為
19.(Ⅰ)設等差數(shù)列的公差為d(d0).
成等比數(shù)列,
即,化簡得,注意到,,
6分,
(Ⅱ)=9,,。。
12分。
20.(Ⅰ)證明:連結交于點,連結.
在正三棱柱中,四邊形是平行四邊形,
∴.
∵,
∴∥. ……………………………2分
∵平面,平面,
∴∥平面. …………………………4分
(Ⅱ)過點作交于,過點作交于,連結.
∵平面平面,平面,平面平面,
∴平面.
∴是在平面內的射影.
∴.
∴是二面角的平面角.
在直角三角形中,.
同理可求: .
∴.
∵,
∴. ……………………12分
21.(Ⅰ),依題意得,即,. 2分 ,, , 5分
(Ⅱ)令得.,
,.因此,當時, 8分
要使得不等式對于恒成立,只需.則.故存在最小的正整數(shù),使得不等式
對于恒成立.
\
(Ⅱ)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com