點.且.(Ⅰ)求雙曲線C的方程, 查看更多

 

題目列表(包括答案和解析)

已知雙曲線C的方程為:
x2
9
-
y2
16
=1
(1)求雙曲線C的離心率;
(2)求與雙曲線C有公共的漸近線,且經(jīng)過點A(-3,2
3
)的雙曲線的方程.

查看答案和解析>>

已知雙曲線C的方程為x2-15y2=15.
(1)求其漸近線方程;
(2)求與雙曲線C焦點相同,且過點(0,3)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

已知雙曲線C的方程為
x2
4
-
y2
5
=1,若直線x-my-3=0截雙曲線的一支所得弦長為5.
(I)求m的值;
(II)設(shè)過雙曲線C上的一點P的直線與雙曲線的兩條漸近線分別交于P1,P2,且點P分有向線段
P1P2
所成的比為λ(λ>0).當(dāng)λ∈[
3
4
,
3
2
]
時,求|
OP1
||
OP2
|(O為坐標(biāo)原點)的最大值和最小值.

查看答案和解析>>

已知雙曲線C的方程為.

(1)求其漸近線方程;

(2)求與雙曲線C焦點相同,且過點的橢圓的標(biāo)準(zhǔn)方程.

 

 

查看答案和解析>>

已知雙曲線C的方程為.

(1)求其漸近線方程;

(2)求與雙曲線C焦點相同,且過點的橢圓的標(biāo)準(zhǔn)方程.

 

查看答案和解析>>

.選擇題:

1

2

3

4

5

6

7

8

9

10

11

12

B

B

A

D

C

D

C

C

D

C

C

B

.填空題:

13. 1600 ;14.7;15. 14;16①②③④

 

三.解答題:

17.(本題滿分10分)(Ⅰ)

(Ⅱ)

所以的最大值為

18.記小張能過第一關(guān)的事件為A,直接去闖第二關(guān)能通過的事件為B,直接去闖第三關(guān)能通過的事件為C.      2分

 則P(A)=0.8,P(B)=0.75,P(C)=0.5

(Ⅰ)小張在第二關(guān)被淘汰的概率為P(A?)=P(A)?(1-P(B))

 =0.8×0.25=0.2. 

 答:小張在第二關(guān)被淘汰的概率為0.2      7分

(Ⅱ)小張不能參加決賽的概率為P=1-P(A?B?C)=1-0.8×0.75×0.5=0.7

答:小張不能參加決賽的概率為0.7.    12

19.(Ⅰ)設(shè)等差數(shù)列的公差為d(d0).

      成等比數(shù)列,

   即,化簡得,注意到,

  6分,

(Ⅱ)=9,,。

   12分。

 

20.(Ⅰ)證明:連結(jié)于點,連結(jié).

在正三棱柱中,四邊形是平行四邊形,

.

,

.   ……………………………2分

      ∵平面,平面

∥平面.       …………………………4分

 

(Ⅱ)過點,過點,連結(jié).

∵平面平面,平面,平面平面,

      ∴平面.

在平面內(nèi)的射影.

.

是二面角的平面角.  

       在直角三角形中,.

同理可求: .

.

.          ……………………12分

21.(Ⅰ),依題意得,即,.        2分   ,, ,    5分

(Ⅱ)令.,

,.因此,當(dāng)時,   8分

要使得不等式對于恒成立,只需.則.故存在最小的正整數(shù),使得不等式

對于恒成立.

\

(Ⅱ)

 

 

 

 


同步練習(xí)冊答案