設(shè)平面上.兩點(diǎn)的坐標(biāo)分別是..其中. 查看更多

 

題目列表(包括答案和解析)

設(shè)平面上P、Q兩點(diǎn)的坐標(biāo)分別是(cos
x
2
,sin
x
2
),(-cos
3x
2
,  sin
3x
2
),其中x∈[0,
π
2
]

(1)求|PQ|的表達(dá)式;
(2)記f(x)=|PQ|2-4λ|PQ|,求函數(shù)f(x)的最小值.

查看答案和解析>>

設(shè)平面上A、B兩點(diǎn)坐標(biāo)分別是(-cos
α
2
  ,sin
α
2
)   ,(cos
2
  ,sin
2
) .  α∈[0,
π
2
]

(1)求|
AB
|的最大值和最小值;
(2)設(shè)函數(shù)f(x)=
AB
2
+4a|
AB
|-3,a∈R,求f(x)的最小值.

查看答案和解析>>

設(shè)平面上P、Q兩點(diǎn)的坐標(biāo)分別是P=(cos
x
2
,sin
x
2
)、Q(-cos
3x
2
,sin
3x
2
)
,其中x∈[0,
π
2
]

(Ⅰ)求|PQ|的表達(dá)式;
(Ⅱ)記f(x)=|PQ|2-|PQ|,求函數(shù)f(x)的最小值和最大值.

查看答案和解析>>

設(shè)平面上P、Q兩點(diǎn)的坐標(biāo)分別是(cos
x
2
,sin
x
2
),(-cos
3x
2
,  sin
3x
2
),其中x∈[0,
π
2
]

(1)求|PQ|的表達(dá)式;
(2)記f(x)=|PQ|2-4λ|PQ|,求函數(shù)f(x)的最小值.

查看答案和解析>>

設(shè)平面上兩點(diǎn)的坐標(biāo)分別是、,其中。

(1)求的表達(dá)式;

(2)記,求函數(shù)的最小值和最大值。

查看答案和解析>>

 

 

一、選擇題:(1)-(12)CAADB 。拢粒粒茫摹 。茫

二、填空題:(13)  (14)  (15)  (16)

三、解答題:

(17)解:(1)                                   …………6分

(2)                 …………8分

 時,

當(dāng)時,

當(dāng)時,……11分

綜上所述:………………12分

(18)解:(1)每家煤礦必須整改的概率1-0.5,且每家煤礦是否整改是相互獨(dú)立的,所以恰好有兩家煤礦必須整改的概率是

                   ………………4分

(2)由題設(shè),必須整改的煤礦數(shù)服從二項分布,從而的數(shù)學(xué)期望是

,即平均有2.50家煤礦必須整改.       ………………8分

(3)某煤礦被關(guān)閉,即煤礦第一次安檢不合格,整改后復(fù)查仍不合格,所以該煤礦被關(guān)閉的概率是,從而該煤礦不被關(guān)閉的概率是0.9,由題意,每家煤礦是否關(guān)閉是相互獨(dú)立的,所以5家煤礦都不被關(guān)閉的概率是

從而至少關(guān)閉一家煤礦的概率是          ………………12分

(19)證明:由多面體的三視圖知,四棱錐的底面是邊長為的正方形,側(cè)面是等腰三角形,,

且平面平面.……2分

(1)      學(xué)科網(wǎng)(Zxxk.Com)連結(jié),則的中點(diǎn),

在△中,,………4分

   且平面平面,

 ∴∥平面  ………6分

(2) 因?yàn)槠矫?sub>⊥平面,

平面∩平面,

 又,所以,⊥平面,

…………8分

,,所以△

等腰直角三角形,

,即………………10分

 又, ∴ 平面,

平面,

所以  平面⊥平面  ………………12分

(20)解:設(shè)

,

              ………………6分

(2)由題意得上恒成立。

在[-1,1]上恒成立。

設(shè)其圖象的對稱軸為直線,所以上遞減,

故只需,,即………………12分

(21)解:(I)由

                                             

                                                                                                   

    所以,數(shù)列                        …………6分

   (II)由得:

                                                                                

     …………(1)                            

     …………(2)                   …………10分

   (2)-(1)得:

                                             …………12分

(22)解:(Ⅰ)∵  

∵直線相切,

   ∴    …………3分

∵橢圓C1的方程是     ………………6分

(Ⅱ)∵M(jìn)P=MF2,

∴動點(diǎn)M到定直線的距離等于它到定點(diǎn)F1(1,0)的距離,

∴動點(diǎn)M的軌跡是C為l1準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線  ………………6分

∴點(diǎn)M的軌跡C2的方程為    …………9分

(Ⅲ)Q(0,0),設(shè) 

 

,化簡得

    ………………11分

當(dāng)且僅當(dāng) 時等號成立   …………13分

∴當(dāng)的取值范圍是

……14分

 

 


同步練習(xí)冊答案