題目列表(包括答案和解析)
設函數(shù).
(Ⅰ) 當時,求的單調區(qū)間;
(Ⅱ) 若在上的最大值為,求的值.
【解析】第一問中利用函數(shù)的定義域為(0,2),.
當a=1時,所以的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,2);
第二問中,利用當時, >0, 即在上單調遞增,故在上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)的定義域為(0,2),.
(1)當時,所以的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,2);
(2)當時, >0, 即在上單調遞增,故在上的最大值為f(1)=a 因此a=1/2.
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當時單調遞減;當時單調遞增,故當時,取最小值
于是對一切恒成立,當且僅當. ①
令則
當時,單調遞增;當時,單調遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當時,單調遞減;當時,單調遞增.故當,即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.
已知函數(shù),(),
(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當時,若函數(shù)的單調區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線在它們的交點(1,c)處具有公共切線
∴,
∴
(2)令,當時,
令,得
時,的情況如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函數(shù)的單調遞增區(qū)間為,,單調遞減區(qū)間為
當,即時,函數(shù)在區(qū)間上單調遞增,在區(qū)間上的最大值為,
當且,即時,函數(shù)在區(qū)間內單調遞增,在區(qū)間上單調遞減,在區(qū)間上的最大值為
當,即a>6時,函數(shù)在區(qū)間內單調遞贈,在區(qū)間內單調遞減,在區(qū)間上單調遞增。又因為
所以在區(qū)間上的最大值為。
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當時,取,有,故時不合題意.當時,令,即
令,得
①當時,,在上恒成立。因此在上單調遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當時,,對于,,故在上單調遞增.因此當取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得 ,
從而
所以有
綜上,,
設函數(shù).
(I)求的單調區(qū)間;
(II)當0<a<2時,求函數(shù)在區(qū)間上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到..
令,則,所以或,得到結論。
第二問中, ().
.
因為0<a<2,所以,.令 可得.
對參數(shù)討論的得到最值。
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則,所以或. ……………………3分
因為定義域為,所以.
令,則,所以.
因為定義域為,所以. ………………………5分
所以函數(shù)的單調遞增區(qū)間為,
單調遞減區(qū)間為. ………………………7分
(II) ().
.
因為0<a<2,所以,.令 可得.…………9分
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
①當,即時,
在區(qū)間上,在上為減函數(shù),在上為增函數(shù).
所以. ………………………10分
②當,即時,在區(qū)間上為減函數(shù).
所以.
綜上所述,當時,;
當時,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com