(2)假設(shè)時(shí)不等式成立.即 查看更多

 

題目列表(包括答案和解析)

上海世博會(huì)于2010年5月1日正式開(kāi)幕,按規(guī)定個(gè)人參觀各場(chǎng)館需預(yù)約,即進(jìn)入園區(qū)后持門(mén)票當(dāng)天預(yù)約,且一張門(mén)票每天最多預(yù)約六個(gè)場(chǎng)館.考慮到實(shí)際情況(排隊(duì)等待時(shí)間等),張華決定參觀甲、乙、丙、丁四個(gè)場(chǎng)館.假設(shè)甲、乙、丙、丁四個(gè)場(chǎng)館預(yù)約成功的概率分別是
2
5
 , 
3
5
 , 
3
5
 , 
3
5
,且它們相互獨(dú)立互不影響.
(1)求張華能成功預(yù)約甲、乙、丙、丁中兩個(gè)場(chǎng)館的概率;
(2)用ξ表示能成功預(yù)約場(chǎng)館的個(gè)數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

上海世博會(huì)于2010年5月1日正式開(kāi)幕,按規(guī)定個(gè)人參觀各場(chǎng)館需預(yù)約,即進(jìn)入園區(qū)后持門(mén)票當(dāng)天預(yù)約,且一張門(mén)票每天最多預(yù)約六個(gè)場(chǎng)館.考慮到實(shí)際情況(排隊(duì)等待時(shí)間等),張華決定參觀甲、乙、丙、丁四個(gè)場(chǎng)館.假設(shè)甲、乙、丙、丁四個(gè)場(chǎng)館預(yù)約成功的概率分別是數(shù)學(xué)公式,且它們相互獨(dú)立互不影響.
(1)求張華能成功預(yù)約甲、乙、丙、丁中兩個(gè)場(chǎng)館的概率;
(2)用ξ表示能成功預(yù)約場(chǎng)館的個(gè)數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

 

上海世博會(huì)于2010年5月1日正式開(kāi)幕,按規(guī)定個(gè)人參觀各場(chǎng)館需預(yù)約,即進(jìn)入園區(qū)后持門(mén)票當(dāng)天預(yù)約,且一張門(mén)票每天最多預(yù)約六個(gè)場(chǎng)館?紤]到實(shí)際情況(排隊(duì)等待時(shí)間等),張華決定參觀甲、乙、丙、丁四個(gè)場(chǎng)館。假設(shè)甲、乙、丙、丁四個(gè)場(chǎng)館預(yù)約成功的概率分別是且它們相互獨(dú)立互不影響。

(1)求張華能成功預(yù)約甲、乙、丙、丁中兩個(gè)場(chǎng)館的概率;

(2)用表示能成功預(yù)約場(chǎng)館的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望。

 

 

 

 

 

 

查看答案和解析>>

(本小題滿(mǎn)分12分)
上海世博會(huì)于2010年5月1日正式開(kāi)幕,按規(guī)定個(gè)人參觀各場(chǎng)館需預(yù)約,即進(jìn)入園區(qū)后持門(mén)票當(dāng)天預(yù)約,且一張門(mén)票每天最多預(yù)約六個(gè)場(chǎng)館?紤]到實(shí)際情況(排隊(duì)等待時(shí)間等),張華決定參觀甲、乙、丙、丁四個(gè)場(chǎng)館。假設(shè)甲、乙、丙、丁四個(gè)場(chǎng)館預(yù)約成功的概率分別是且它們相互獨(dú)立互不影響。
(1)求張華能成功預(yù)約甲、乙、丙、丁中兩個(gè)場(chǎng)館的概率;
(2)用表示能成功預(yù)約場(chǎng)館的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線(xiàn)AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng)

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線(xiàn),所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案