(3)由得 (1 ? m2) x2 ? 2mx ? 2 = 0.依題意有 查看更多

 

題目列表(包括答案和解析)

對于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009;
(2)若{an}滿足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
(3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中bn=an+2n+
2009
2n
,問是否存在最小的自然數(shù)n(n∈N*),使得對一切自然數(shù)m≥n,都有bm>2009?請說明理由.

查看答案和解析>>

對于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009;
(2)若{an}滿足,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
(3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中,問是否存在最小的自然數(shù)n(n∈N*),使得對一切自然數(shù)m≥n,都有bm>2009?請說明理由.

查看答案和解析>>

對于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009;
(2)若{an}滿足數(shù)學(xué)公式,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
(3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中數(shù)學(xué)公式,問是否存在最小的自然數(shù)n(n∈N*),使得對一切自然數(shù)m≥n,都有bm>2009?請說明理由.

查看答案和解析>>

對于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009
(2)若{an}滿足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
(3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中bn=an+2n+
2009
2n
,問是否存在最小的自然數(shù)n(n∈N*),使得對一切自然數(shù)m≥n,都有bm>2009?請說明理由.

查看答案和解析>>

設(shè)a,b∈R+,a+b=1.
(1)證明:ab+
1
ab
≥4+
1
4
=4
1
4
;
(2)探索、猜想,將結(jié)果填在括號內(nèi);
a2b2+
1
a2b2
≥(
 
);
a3b3+
1
a3b3
≥(
 
);
(3)由(1)(2)你能歸納出更一般的結(jié)論嗎?請證明你得出的結(jié)論.

查看答案和解析>>


同步練習(xí)冊答案