題目列表(包括答案和解析)
設(shè)全集R,若集合,則為 ( )
A. B.
C. D.
設(shè)全集R,若集合,則為 ( )
A. | B. |
C. | D. |
設(shè)全集R,若集合,則為 ( )
A. B.
C. D.
設(shè)全集R,若集合,則為( )
A. | B. |
C. | D. |
A. | B. |
C. | D. |
一、選擇題:本大題共12小題,每小題5分,共60分。
CABD CDDC BABD
二、填空題:本大題共4小題,每小題4分,共16分。
13.3 14.1200 15. 16.
三、解答題:本大題共6小題,共74分。
17.解: 1分
∵,∴⊥,∴∠
在Rt△ADC中 4分
∴ 6分
∵ 7分
又∵ 9分
∴
12分
18.解:(1)當(dāng)=7時,甲贏意味著“第七次甲贏,前6次贏5次,但根據(jù)規(guī)則,前5次中必輸1次”,由規(guī)則,每次甲贏或乙贏的概率均為,因此
= 4分
(2)設(shè)游戲終止時骰子向上的點數(shù)是奇數(shù)出現(xiàn)的次數(shù)為,向上的點數(shù)是偶數(shù)出現(xiàn)的次數(shù)為n,則由,可得:當(dāng)
或,時,當(dāng),或因此的可能取值是5、7、9 6分
每次投擲甲贏得乙一個福娃與乙贏得甲一個福娃的可能性相同,其概率都是
10分
所以的分布列是:
5
7
9
12分
19.解:設(shè)數(shù)列的公比為
(1)若,則
顯然不成等差數(shù)列,與題設(shè)條件矛盾,所以≠1 1分
由成等差數(shù)列,得
化簡得 4分
∴ 5分
(2)解法1: 6分
當(dāng)≥2時,
10分
=1+ 12分
解法2: 6分
當(dāng)≥2時,設(shè)這里,為待定常數(shù)。
則
當(dāng)n≥2時,易知數(shù)列為單調(diào)遞增數(shù)列,所以
可見,n≥2時,
于是,n≥2時,有 10分
=1+ 12分
20.解法一:如圖建立空間直角坐標(biāo)系,
(1)有條件知 1分
由面⊥面ABC,AA1⊥A
∵ ……………3分
∴與不垂直,即AA1與BC不垂直,
∴AA1與平面A1BC不垂直……5分
(2)由ACC
知==…7分
設(shè)平面BB
由
令,則 9分
另外,平面ABC的法向量(0,0,1) 10分
所以側(cè)面BB
解法二:(1)取AC中點D,連結(jié)A1D,則A1D⊥AC。
又∵側(cè)面ACC
∵A1D⊥面ABC ………2分
∴A1D⊥BC。
假設(shè)AA1與平面A1BC垂直,則A1D⊥BC。
又A1D⊥BC,由線面垂直的判定定理,
BC⊥面A
有兩個直角,與三角形內(nèi)角和定理矛盾。假設(shè)不
成立,所以AA1不與平面A1BC垂直………5分
(2)側(cè)面BB
過點C作A
過點E作B
因為B
所以∠CFE即為所求側(cè)面BB
由得
在Rt△ABC中,cos∠
所以,側(cè)面BB
21.(1)設(shè)與在公共點處的切線相同。
。由題意知
即 2分
解得或(舍去,) 4分
可見 7分
(2)
要使在(0,4)上單調(diào),
須在(0,4)上恒成立 8分
在(0,4)上恒成立在(0,4)上恒成立。
而且可為足夠小的正數(shù),必有 9分
在(0,4)上恒成立
或 11分
綜上,所求的取值范圍為,或,或 12分
22.(1)∵點A的坐標(biāo)為()
∴,橢圓方程為 ①…1分
又∵,且BC過橢圓M的中心
(0,0),∴ ……2分
又∵∴△AOC是以∠C為直角的等腰三角形,
易得C點坐標(biāo)為(,) ……3分
將(,)代入①式得
∴橢圓M的方程為 ……4分
(2)當(dāng)直線的斜率,直線的方程為
則滿足題意的t的取值范圍為……5分
當(dāng)直線的斜率≠0時,設(shè)直線的方程為
由得 6分
∵直線與橢圓M交于兩點P、Q,
∴△=
即 ② 8分
設(shè)P(x1,y1),Q(x2,y2),PQ中點,則
的橫坐標(biāo),縱坐標(biāo),
D點的坐標(biāo)為(0,-2)
由,得⊥,,
即即。 ③ 11分
∴∴。 ④
由②③得,結(jié)合④得到 13分
綜上所述, 14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com