題目列表(包括答案和解析)
A.α⊥β,α∩β=l,m⊥l
B.α∩γ=m,a⊥γ,β⊥γ
C.α⊥γ,β⊥γ,m⊥α
D.n⊥α,n⊥β,m⊥α
A.α⊥β,α∩β=l,m⊥l B.α∩γ=m,α⊥γ,β⊥γ
C.α⊥γ,β⊥γ,m⊥α D.n⊥α,n⊥β,m⊥α
設(shè)α、β、γ為平面,l、m、n為直線,則m⊥β的一個(gè)充分條件為( )
(A)α⊥β,α∩β=l,m⊥l
(B)n⊥α,n⊥β,m⊥α
(C)α∩γ=m,α⊥γ,β⊥γ
(D)α⊥γ,β⊥γ,m⊥α
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
A
B
C
B
C
D
D
D
C
B
B(文、理)
二、填空題:
13.-1 14.y2=4x(x>0,y>0) 15. 16. 16.(文)
三、解答題:(理科)
17.解:(1)由已知1-(2cos
∴2cos
∴A=60°
(2)S△=bcsin60°=bc
由余弦定理cos60°=
∴b2+c2=bc+36
由b2+c2≥2bc ∴bc≤36
∴S△==9,此時(shí)b=c故△ABC為等邊三角形
18.解:(1)設(shè)A(-,0),B(0,b)
∴ 又=(2,2)
∴解得
(2)由x+2>x2-x-6 得-2<x<4
,由于x+2>0
∴由均值不等式得原式最小值為-3,僅當(dāng)x=-1時(shí)
19.解:(1)證明:連AC交BD于O,連EO
∵E、O分別是中點(diǎn),
EO∥PA
∴ EO面EDB PA∥面EDB
PA面EDB
(2) ∵△PDC為正△
∴DE⊥PC
面PDC⊥面ABCD
BC⊥CD BC⊥DE
BC面ABCD
|