[解] (Ⅰ)由已知可得.函數(shù)的定義域?yàn)? 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),

(1)求函數(shù)的定義域;

(2)求函數(shù)在區(qū)間上的最小值;

(3)已知,命題p:關(guān)于x的不等式對(duì)函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

【解析】第一問中,利用由 即

第二問中,,得:

第三問中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。

解:(1)由 即

(2),得:

(3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí),

當(dāng)命題p為假,命題q為真時(shí),,

所以

 

查看答案和解析>>

已知中,,.設(shè),記.

(1)   求的解析式及定義域;

(2)設(shè),是否存在實(shí)數(shù),使函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image010.png">?若存在,求出的值;若不存在,請(qǐng)說明理由.

【解析】第一問利用(1)如圖,在中,由,,

可得

又AC=2,故由正弦定理得

 

(2)中

可得.顯然,,則

1當(dāng)m>0的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">m+1=3/2,n=1/2

2當(dāng)m<0,不滿足的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">;

因而存在實(shí)數(shù)m=1/2的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">.

 

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時(shí),,故. …………5分

所以.                 …………6分

(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點(diǎn),

當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問中,若對(duì)任意不等式恒成立,問題等價(jià)于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對(duì)任意不等式恒成立,

問題等價(jià)于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時(shí),;

當(dāng)時(shí),

當(dāng)b>2時(shí),;             ............8分

問題等價(jià)于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>

(本題滿分12分)已知函數(shù)

(1)判斷f(x)的奇偶性,并說明理由;

(2)若方程有解,求m的取值范圍;

【解析】第一問利用函數(shù)的奇偶性的定義可以判定定義域和f(x)與f(-x)的關(guān)系從而得到結(jié)論。

第二問中,利用方程有解,說明了參數(shù)m落在函數(shù)y=f(x)的值域里面即可。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案