②假設當時命題成立.即成立. 查看更多

 

題目列表(包括答案和解析)

 已知命題及其證明:

(1)當時,左邊=1,右邊=所以等式成立;

(2)假設時等式成立,即成立,

則當時,,所以時等式也成立。

由(1)(2)知,對任意的正整數(shù)n等式都成立。      

經(jīng)判斷以上評述

A.命題、推理都正確      B命題不正確、推理正確 

C.命題正確、推理不正確      D命題、推理都不正確

 

查看答案和解析>>

試判斷下面的證明過程是否正確:

用數(shù)學歸納法證明:

證明:(1)當時,左邊=1,右邊=1

∴當時命題成立.

(2)假設當時命題成立,即

則當時,需證

由于左端等式是一個以1為首項,公差為3,項數(shù)為的等差數(shù)列的前項和,其和為

式成立,即時,命題成立.根據(jù)(1)(2)可知,對一切,命題成立.

查看答案和解析>>

試判斷下面的證明過程是否正確:

用數(shù)學歸納法證明:

證明:(1)當時,左邊=1,右邊=1

∴當時命題成立.

(2)假設當時命題成立,即

則當時,需證

由于左端等式是一個以1為首項,公差為3,項數(shù)為的等差數(shù)列的前項和,其和為

式成立,即時,命題成立.根據(jù)(1)(2)可知,對一切,命題成立.

查看答案和解析>>

已知命題1+2+22+…+2n-1=2n-1及其證明:
(1)當n=1時,左邊=1,右邊=21-1=1,所以等式成立;
(2)假設n=k時等式成立,即1+2+22+…+2k-1=2k-1 成立,
則當n=k+1時,1+2+22+…+2k-1+2k==2k+1-1,所以n=k+1時等式也成立,
由(1)(2)知,對任意的正整數(shù)n等式都成立,
判斷以上評述

[     ]

A.命題、推理都正確
B.命題正確、推理不正確
C.命題不正確、推理正確
D.命題、推理都不正確

查看答案和解析>>

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設 (N*).

①證明:

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結論。

解:(Ⅰ)當時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設,,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學歸納法)①當時, ,命題成立;

   ②假設時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于

所以,

從而.

也即

 

查看答案和解析>>


同步練習冊答案