同理可驗證4時..時.成立. 查看更多

 

題目列表(包括答案和解析)

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
FAE
FAE

又AG=AE,AF=AF
∴△GAF≌
△EAF
△EAF

GF
GF
=EF,故DE+BF=EF.
(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.
(3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若△ABC固定不動,△AFG繞點A旋轉(zhuǎn),AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉(zhuǎn)過程中,等式BD2+CE2=DE2始終成立,請說明理由.

查看答案和解析>>

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,

由旋轉(zhuǎn)可得:AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.

(3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點A旋轉(zhuǎn),AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉(zhuǎn)過程中,等式BD+CE=DE始終成立,請說明理由.

查看答案和解析>>

請嘗試解決以下問題:

(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

感悟解題方法,并完成下列填空:

將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,

 

 

由旋轉(zhuǎn)可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,點G,B,F(xiàn)在同一條直線上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,   ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:

如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.

 

 

(2)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點A旋轉(zhuǎn),AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉(zhuǎn)過程中,等式BD+CE=DE始終成立,請說明理由.

 

 

 

查看答案和解析>>

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,

由旋轉(zhuǎn)可得:AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
(2)運用(1)解答中所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,且∠BAE=45°,DE=4,求BE的長.

(3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點A旋轉(zhuǎn),AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),在旋轉(zhuǎn)過程中,等式BD+CE=DE始終成立,請說明理由.

查看答案和解析>>

根據(jù)所給的基本材料,請你進行適當(dāng)?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設(shè)運動的時間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>


同步練習(xí)冊答案