∴ BE=AD(也可用旋轉(zhuǎn)方法證明BE=AD)(2)如圖在△CQT中 ∵∠TCQ=30° ∠RQT=60° ∴∠QTC=30° ∴∠QTC=∠TCQ ∴QT=QC=x ∴ RT=3-x ∵∠RTS+∠R=90° ∴∠RST=90° 查看更多

 

題目列表(包括答案和解析)

《勾股圓方圖》是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形(如圖(1)).設(shè)每個直角三角形中較短直角邊為a,較長直角邊為b,斜邊為c精英家教網(wǎng)
(1)利用圖(1)面積的不同表示方法驗(yàn)證勾股定理.
(2)實(shí)際上還有很多代數(shù)恒等式也可用這種方法說明其正確性.試寫出圖(2)所表示的代數(shù)恒等式:
 
;
(3)如果圖(1)大正方形的面積是13,小正方形的面積是1,求(a+b)2的值.

查看答案和解析>>

如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點(diǎn)放在A上,從AB邊開始繞點(diǎn)A逆時針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.
(1)小敏在線段BC上取一點(diǎn)M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)0°<α≤45°時,小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2.同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決;小穎的想法:將△ABD沿AD所在的直線對折得到△ADF(如圖2);小亮的想法:將△ABD繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ACG(如圖3).請你選擇其中的一種方法證明小敏的發(fā)現(xiàn)的是正確的.

查看答案和解析>>

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
FAE
FAE

又AG=AE,AF=AF
∴△GAF≌
△EAF
△EAF

GF
GF
=EF,故DE+BF=EF.
(2)運(yùn)用(1)解答中所積累的經(jīng)驗(yàn)和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長.
(3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若△ABC固定不動,△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過程中,等式BD2+CE2=DE2始終成立,請說明理由.

查看答案和解析>>

請嘗試解決以下問題:
(1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,

由旋轉(zhuǎn)可得:AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
(2)運(yùn)用(1)解答中所積累的經(jīng)驗(yàn)和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長.

(3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過程中,等式BD+CE=DE始終成立,請說明理由.

查看答案和解析>>

請嘗試解決以下問題:

(1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

感悟解題方法,并完成下列填空:

將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,

 

 

由旋轉(zhuǎn)可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,點(diǎn)G,B,F(xiàn)在同一條直線上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,   ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

(2)運(yùn)用(1)解答中所積累的經(jīng)驗(yàn)和知識,完成下題:

如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長.

 

 

(2)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過程中,等式BD+CE=DE始終成立,請說明理由.

 

 

 

查看答案和解析>>


同步練習(xí)冊答案