即函數(shù)的單調(diào)區(qū)間為.. 6分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=為常數(shù)。

(I)當(dāng)=1時,求f(x)的單調(diào)區(qū)間;

(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求的取值范圍。

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問中,利用當(dāng)a=1時,f(x)=,則f(x)的定義域是然后求導(dǎo),,得到由,得0<x<1;由,得x>1;得到單調(diào)區(qū)間。第二問函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),則在區(qū)間[1,2]上恒成立,即即,或在區(qū)間[1,2]上恒成立,解得a的范圍。

(1)當(dāng)a=1時,f(x)=,則f(x)的定義域是

。

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函數(shù),在(1,上是減函數(shù)!6分

(2)。若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),

在區(qū)間[1,2]上恒成立。∴,或在區(qū)間[1,2]上恒成立。即,或在區(qū)間[1,2]上恒成立。

又h(x)=在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或。

 

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時,,故. …………5分

所以.                 …………6分

(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點(diǎn),

當(dāng),即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

設(shè)函數(shù)

(1)當(dāng)時,求曲線處的切線方程;

(2)當(dāng)時,求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當(dāng)……2分

   

為所求切線方程。………………4分

(2)當(dāng)

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調(diào)遞增!酀M足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實(shí)數(shù)的取值范圍是

 

查看答案和解析>>

函數(shù)是定義在上的奇函數(shù),且。

(1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;

(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且

解得,

(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時,,當(dāng)x=1時,

解:(1)是奇函數(shù),。

,………………2分

,又,

(2)任取,且,

,………………6分

,

,,,

在(-1,1)上是增函數(shù)!8分

(3)單調(diào)減區(qū)間為…………………………………………10分

當(dāng),x=-1時,,當(dāng)x=1時,。

 

查看答案和解析>>


同步練習(xí)冊答案