題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿(mǎn)足異面直線(xiàn)BE與CD所成的角為30°,求AE的長(zhǎng).
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,于是,所以
(2) ,設(shè)平面PCD的法向量,
則,即.不防設(shè),可得.可取平面PAC的法向量于是從而.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)證明:由,可得,又由,,故.又,所以.
(2)如圖,作于點(diǎn)H,連接DH.由,,可得.
因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值為.
(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線(xiàn)必與線(xiàn)段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線(xiàn)BE與CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線(xiàn)PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
【解析】(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912413079631221/SYS201207091242012651351203_ST.files/image002.png">
又是平面PAC內(nèi)的兩條相較直線(xiàn),所以BD平面PAC,
而平面PAC,所以.
(Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD平面PAC,
所以是直線(xiàn)PD和平面PAC所成的角,從而.
由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因?yàn)樗倪呅蜛BCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積
在等腰三角形AOD中,
所以
故四棱錐的體積為.
【點(diǎn)評(píng)】本題考查空間直線(xiàn)垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計(jì)算.第一問(wèn)只要證明BD平面PAC即可,第二問(wèn)由(Ⅰ)知,BD平面PAC,所以是直線(xiàn)PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積
已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)。
(1)證明:面面;
(2)求與所成的角;
(3)求面與面所成二面角的余弦值.
【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.
(2)建立空間直角坐標(biāo)系,寫(xiě)出向量與的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.
(3)分別求出平面的法向量和面的一個(gè)法向量,然后求出兩法向量的夾角即可.
1957年世界人口30億,17年后(即1974年)增加了10億,即達(dá)40億;又過(guò)13年達(dá)到50億;到1999年全世界總?cè)丝谶_(dá)到60億.以此速度,人口學(xué)專(zhuān)家預(yù)測(cè)到2025年,世界人口將達(dá)到80億;而到2050年人口將超過(guò)90億,其中亞洲人口最高,將達(dá)到52.68億,北美洲3.92億、歐洲8.28億、拉丁美洲及加勒比地區(qū)8.09億,非洲17.68億.
有一位同學(xué)根據(jù)以上提供的數(shù)據(jù)制作了三幅統(tǒng)計(jì)圖(如圖1,圖2,圖3),請(qǐng)根據(jù)這些圖完成問(wèn)題:
(1)三副統(tǒng)計(jì)圖分別表示了什么內(nèi)容?
(2)從哪幅統(tǒng)計(jì)圖中最能看出世界人口的總體變化情況?
(3)2050年非洲人口大約將達(dá)到多少億?你是從哪幅統(tǒng)計(jì)圖中得到這個(gè)數(shù)據(jù)的?
(4)2050年亞洲人口比其他各洲人口的總和還要多,你從哪幅統(tǒng)計(jì)圖中可以明顯地得到這個(gè)結(jié)論?
(5)從全世界人口的快速增長(zhǎng)中,你得到什么啟發(fā)?并請(qǐng)發(fā)表一下你的感想!
數(shù)列首項(xiàng),前項(xiàng)和滿(mǎn)足等式(常數(shù),……)
(1)求證:為等比數(shù)列;
(2)設(shè)數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項(xiàng)公式.
(3)設(shè),求數(shù)列的前項(xiàng)和.
【解析】第一問(wèn)利用由得
兩式相減得
故時(shí),
從而又 即,而
從而 故
第二問(wèn)中, 又故為等比數(shù)列,通項(xiàng)公式為
第三問(wèn)中,
兩邊同乘以
利用錯(cuò)位相減法得到和。
(1)由得
兩式相減得
故時(shí),
從而 ………………3分
又 即,而
從而 故
對(duì)任意,為常數(shù),即為等比數(shù)列………………5分
(2) ……………………7分
又故為等比數(shù)列,通項(xiàng)公式為………………9分
(3)
兩邊同乘以
………………11分
兩式相減得
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com