即.解得n=8.n=1.-----------------4分 查看更多

 

題目列表(包括答案和解析)

求圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設(shè)所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應給分

 

查看答案和解析>>

4. m>2或m<-2 解析:因為f(x)=在(-1,1)內(nèi)有零點,所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2

隨機變量的所有等可能取值為1,2…,n,若,則(    )

A. n=3        B.n=4          C. n=5        D.不能確定

5.m=-3,n=2 解析:因為的兩零點分別是1與2,所以,即,解得

6.解析:因為只有一個零點,所以方程只有一個根,因此,所以

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于,

時,;當時,;

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數(shù)學歸納法.

時,,成立.

假設(shè)當時,不等式成立,

時,, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

求圓心在直線上,且經(jīng)過原點及點的圓的標準方程.

【解析】本試題主要考查的圓的方程的求解,利用圓心和半徑表示圓,首先設(shè)圓心C的坐標為(),然后利用,得到,從而圓心,半徑.可得原點 標準方程。

解:設(shè)圓心C的坐標為(),...........2分

,即

,解得........4分

所以圓心,半徑...........8分

故圓C的標準方程為:.......10分

 

查看答案和解析>>

如圖,長方體中,底面是正方形,的中點,是棱上任意一點。

(Ⅰ)證明: ;

(Ⅱ)如果=2 ,=,, 求 的長。

 【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,設(shè),由,即,解得,即 的長為。

 

查看答案和解析>>


同步練習冊答案