題目列表(包括答案和解析)
6 |
6 |
三棱錐的五條棱長都是5,另一條棱長是6,求它的體積.
三棱錐的三個側面互相垂直,它們的面積分別為6 m2,4 m2和3 m2,求它的體積.
三棱錐的頂點為P,PA、PB、PC為三條側棱,且PA、PB、PC兩兩互相垂直,又PA=2,PB=3,PC=4,求三棱錐P-ABC的體積V.
三棱錐的頂點為
P,PA、PB、PC為三條側棱,且PA、PB、PC兩兩互相垂直,又PA=2,PB=3,PC=4,求三棱錐P-ABC的體積V.一、填空題
1、 2、40 3、② ④) 4、-1 5、 6、3
7、 8、 9、1 10、 11、 12、46 13、
14、(3)(4)
二、解答題
15、解:(1)∵a⊥b,∴a?b=0.而a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),
故a?b=6sin2α+5sinαcosα-4cos2α=0.……………………………………2分
由于cosα≠0,∴6tan2α+5tanα-4 =0.解之,得tanα=-,或tanα=.……………………………………………6分
∵α∈(),tanα<0,故tanα=(舍去).∴tanα=-.…………7分
(2)∵α∈(),∴.
由tanα=-,求得,=2(舍去).
∴,…………………………………………………………12分
cos()=
= =. ………………………14分
16、證明:(1)連結,在中,、分別為,的中點,則
(2)
(3)
且
,
∴ 即
=
=
17、解:由已知圓的方程為,
按平移得到.
∵∴.
即.
又,且,∴.∴.
設, 的中點為D.
由,則,又.
∴到的距離等于.
即, ∴.
∴直線的方程為:或.
18、(1)在△ADE中,y2=x2+AE2-2x?AE?cos60°y2=x2+AE2-x?AE,①
又S△ADE= S△ABC=a2=x?AE?sin60°x?AE=2.②
②代入①得y2=x2+-2(y>0), ∴y=(1≤x≤2)。。。.6分
(2)如果DE是水管y=≥,
當且僅當x2=,即x=時“=”成立,故DE∥BC,且DE=.
如果DE是參觀線路,記f(x)=x2+,可知
函數(shù)在[1,]上遞減,在[,2]上遞增,
故f(x) max=f(1)=f(2)=5. ∴y max=.
即DE為AB中線或AC中線時,DE最長.。。。。。。。。。。。8分
19、解:(1)由
是首項為,公比為的等比數(shù)列
當時,,
所以
(2)由得:
(作差證明)
綜上所述當 時,不等式對任意都成立.
20.解.(1)
當時,,此時為單調遞減
當時,,此時為單調遞增
的極小值為
(2)的極小值,即在的最小值為1
令
又 當時
在上單調遞減
當時,
(3)假設存在實數(shù),使有最小值3,
①當時,由于,則
函數(shù)是上的增函數(shù)
解得(舍去)
②當時,則當時,
此時是減函數(shù)
當時,,此時是增函數(shù)
解得
理科加試題
1、(1)“油罐被引爆”的事件為事件A,其對立事件為,則P()=C
∴P(A)=1- 答:油罐被引爆的概率為
(2)射擊次數(shù)ξ的可能取值為2,3,4,5,
P(ξ=2)=, P(ξ=3)=C ,
P(ξ=4)=C, P(ξ=5)=C
ξ
2
3
4
5
故ξ的分布列為:
Eξ=2×+3×+4×+5×=
2、解:(1)由圖形可知二次函數(shù)的圖象過點(0,0),(8,0),并且f(x)的最大值為16
則,
∴函數(shù)f(x)的解析式為
(2)由得
∵0≤t≤2,∴直線l1與f(x)的圖象的交點坐標為(
由定積分的幾何意義知:
3、解:在矩陣N= 的作用下,一個圖形變換為其繞原點逆時針旋轉得到的圖形,在矩陣M= 的作用下,一個圖形變換為與之關于直線對稱的圖形。因此
△ABC在矩陣MN作用下變換所得到的圖形與△ABC全等,從而其面積等于△ABC的面積,即為1
4、解:以極點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.
(1),,由得.
所以.
即為的直角坐標方程.
同理為的直角坐標方程.
(2)由解得.
即,交于點和.過交點的直線的直角坐標方程為.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com