人數(shù)13841 查看更多

 

題目列表(包括答案和解析)

16、某次射擊訓(xùn)練中,一小組的成績?nèi)缦卤硭荆喝粼撔〗M的平均成績?yōu)?.7環(huán),則成績?yōu)?環(huán)的人數(shù)是
4

查看答案和解析>>

某研究機(jī)構(gòu)準(zhǔn)備舉行一次數(shù)學(xué)新課程研討會,共邀請50名一線教師參加,使用不同版本教材的教師人數(shù)如下表所示:
版本 人教A版 人教B版 蘇教版 北師大版
人數(shù) 20 15 5 10
(1)從這50名教師中隨機(jī)選出2名,求2人所使用版本相同的概率;
(2)若隨機(jī)選出2名使用人教版的教師發(fā)言,設(shè)使用人教A版的教師人數(shù)為ξ,求隨機(jī)變量ξ的變分布列和數(shù)學(xué)期望.

查看答案和解析>>

某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù)).
(I)求甲、乙兩工人都被抽到的概率,其中甲為A類工人,乙為B類工人;
(II)從A類工人中的抽查結(jié)果和從B類工人中的抽插結(jié)果分別如下表1和表2.
表1:
生產(chǎn)能力分組 [100,110] [110,120] [120,130] [130,140] [140,150]
人數(shù) 4 8 x 5 3
表2:
生產(chǎn)能力分組 [110,120] [120,130] [130,140] [140,150]
人數(shù) 6 y 36 18
(i)先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更?(不用計算,可通過觀察直方圖直接回答結(jié)論)
精英家教網(wǎng)
(ii)分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

查看答案和解析>>

某校師生人數(shù)之比為1:11,而男生與女生比為6:5,現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本,已知從女生1000人中抽取的人數(shù)為80人,則n=
 

查看答案和解析>>

13、2009年8月15日晚8時開始某市交警一隊在該市一交通崗前設(shè)點(diǎn)對過往的車輛進(jìn)行抽查,經(jīng)過兩個小時共查出酒后駕車者60名,圖甲是對這60名酒后駕車者血液中酒精濃度進(jìn)行檢測后依所得結(jié)果畫出的頻率分布直方圖,則其中酒精濃度在70mg/100ml(含70)以上人數(shù)約為
9
,統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,圖乙的程序框圖是對這60名酒后駕車者血液的酒精含量做進(jìn)一步的統(tǒng)計,則圖乙輸出的S值為
47
.(圖甲中每組包括左端點(diǎn),不包括右端點(diǎn),圖乙中數(shù)據(jù)mi與fi分別表示圖甲中各組的組中值及頻率)

查看答案和解析>>

第Ⅰ部分(正卷)

一、填空題:本大題共14小題,每小題5分,計70分。

1、    2、    3、對任意使    4、2    5、

6、    7、    8、8      9、        10、40

11、    12、4       13、    14、

二、解答題:本大題共6小題,計90分。解答應(yīng)寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi)。

15、解:(1)解:

,有,

解得。                                         ……7分

(2)解法一:       ……11分

             。  ……14分

  解法二:由(1),,得

   

                                        ……10分

于是,

               ……12分

代入得。            ……14分

16、證明:(1)∵

                                          ……4分

(2)令中點(diǎn)為,中點(diǎn)為,連結(jié)、

     ∵的中位線

           ……6分   

又∵

     ……8分

     ∴

     ∵為正

         ……10分

     ∴

     又∵,

 ∴四邊形為平行四邊形    ……12分

    ……14分

17、解:(1)設(shè)米,,則

                                                ……2分

                                            ……4分

                                            ……5分

(2)                   ……7分

      

     

     此時                                               ……10分

(3)∵

                       ……11分

當(dāng)時,

上遞增                       ……13分

此時                                                ……14分

答:(1)

    (2)當(dāng)的長度是4米時,矩形的面積最小,最小面積為24平方米;

    (3)當(dāng)的長度是6米時,矩形的面積最小,

最小面積為27平方米。                              ……15分

18、(1)解:①若直線的斜率不存在,即直線是,符合題意。   ……2分

②若直線斜率存在,設(shè)直線,即。

由題意知,圓心以已知直線的距離等于半徑2,即:,

解之得                                                  ……5分

所求直線方程是,                            ……6分

(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為

                       ……8分

又直線垂直,由 ……11分

……13分

             為定值。

   故是定值,且為6。                            ……15分

19、解:(1)由題意得,                             ……2分

   ∴    ……3分

,∴

單調(diào)增函數(shù),                                             ……5分

對于恒成立。      ……6分

(2)方程;   ∴  ……7分

     ∵,∴方程為                      ……9分

     令,

      ∵,當(dāng)時,,∴上為增函數(shù);

     時,,  ∴上為減函數(shù),    ……12分

     當(dāng)時,                     ……13分

,            

∴函數(shù)、在同一坐標(biāo)系的大致圖象如圖所示,

∴①當(dāng),即時,方程無解。

②當(dāng),即時,方程有一個根。

③當(dāng),即時,方程有兩個根。    ……16分

 

 

 

 

 

 

 

 

第Ⅱ部分(附加卷)

一、必做題

21、解:(1)由

同步練習(xí)冊答案