題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設數(shù)列滿足:,設,
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
第Ⅰ部分(正卷)
一、填空題:本大題共14小題,每小題5分,計70分。
1、 2、 3、對任意使 4、2 5、
6、 7、 8、8 9、 10、40
11、 12、4 13、 14、
二、解答題:本大題共6小題,計90分。解答應寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內(nèi)。
15、解:(1)解:,
由,有,
解得。 ……7分
(2)解法一: ……11分
。 ……14分
解法二:由(1),,得
∴
∴ ……10分
于是,
……12分
代入得。 ……14分
16、證明:(1)∵
∴ ……4分
(2)令中點為,中點為,連結、
∵是的中位線
∴ ……6分
又∵
∴
∴ ……8分
∴
∵為正
∴ ……10分
∴
又∵,
∴四邊形為平行四邊形 ……12分
∴
∴ ……14分
17、解:(1)設米,,則
∵
∴
∴ ……2分
∴
∴ ……4分
∴
∴或 ……5分
(2) ……7分
此時 ……10分
(3)∵
令, ……11分
∵
當時,
∴在上遞增 ……13分
∴
此時 ……14分
答:(1)或
(2)當的長度是
(3)當的長度是
最小面積為27平方米。 ……15分
18、(1)解:①若直線的斜率不存在,即直線是,符合題意。 ……2分
②若直線斜率存在,設直線為,即。
由題意知,圓心以已知直線的距離等于半徑2,即:,
解之得 ……5分
所求直線方程是, ……6分
(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設直線方程為
由得 ……8分
又直線與垂直,由得 ……11分
∴
……13分
為定值。
故是定值,且為6。 ……15分
19、解:(1)由題意得, ……2分
∴, ∴ ……3分
∴,∴在是
單調(diào)增函數(shù), ……5分
∴對于恒成立。 ……6分
(2)方程; ∴ ……7分
∵,∴方程為 ……9分
令,,
∵,當時,,∴在上為增函數(shù);
時,, ∴在上為減函數(shù), ……12分
當時, ……13分
,
∴函數(shù)、在同一坐標系的大致圖象如圖所示,
∴①當,即時,方程無解。
②當,即時,方程有一個根。
③當,即時,方程有兩個根。 ……16分
第Ⅱ部分(附加卷)
一、必做題
21、解:(1)由
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com