題目列表(包括答案和解析)
(本題滿分14分)
已知實(shí)數(shù),曲線與直線的交點(diǎn)為(異于原點(diǎn)),在曲線 上取一點(diǎn),過點(diǎn)作平行于軸,交直線于點(diǎn),過點(diǎn)作平行于軸,交曲線于點(diǎn),接著過點(diǎn)作平行于軸,交直線于點(diǎn),過點(diǎn)作平行于軸,交曲線于點(diǎn),如此下去,可以得到點(diǎn),,…,,… . 設(shè)點(diǎn)的坐標(biāo)為,.
(Ⅰ)試用表示,并證明;
(Ⅱ)試證明,且();
(Ⅲ)當(dāng)時(shí),求證: ().(本題滿分14分)
已知函數(shù)圖象上一點(diǎn)處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對數(shù)的底數(shù));
(Ⅲ)令,若的圖象與軸交于,(其中),的中點(diǎn)為,求證:在處的導(dǎo)數(shù).
(本題滿分14分)
已知曲線方程為,過原點(diǎn)O作曲線的切線
(1)求的方程;
(2)求曲線,及軸圍成的圖形面積S;
(3)試比較與的大小,并說明理由。(本題滿分14分)
已知中心在原點(diǎn),對稱軸為坐標(biāo)軸的橢圓,左焦點(diǎn),一個(gè)頂點(diǎn)坐標(biāo)為(0,1)
(1)求橢圓方程;
(2)直線過橢圓的右焦點(diǎn)交橢圓于A、B兩點(diǎn),當(dāng)△AOB面積最大時(shí),求直線方程。
(本題滿分14分)
如圖,在直三棱柱中,,,求二面角的大小。
一、填空題:本大題共14小題,每小題5分,計(jì)70分.
1.第二象限 2. 3 3.Π 4. 5. __ 6. 2 7.
8. 9. 10 10.向右平移 11. 3.5 12.①④ 13. 14.①③
二、解答題:本大題共6小題,計(jì)90分.
15.解:(1).
又,,即,
.
(2),,
且,
,即的取值范圍是.
16.(Ⅰ)證明:連結(jié)AF,在矩形ABCD中,因?yàn)锳D=4,AB=2,點(diǎn)F是BC的中點(diǎn),所以∠AFB=∠DFC=45°.所以∠AFD=90°,即AF⊥FD.又PA⊥平面ABCD,所以PA⊥FD.
所以FD⊥平面PAF. 故PF⊥FD.
(Ⅱ)過E作EH//FD交AD于H,則EH//平面PFD,且 AH=AD. 再過H作HG//PD交PA于G,則GH//平面PFD,且 AG=PA. 所以平面EHG//平面PFD,則EG//平面PFD,從而點(diǎn)G滿足AG=PA.
17.解:(1)由于⊙M與∠BOA的兩邊均相切,故M到OA及OB的距離均為⊙M的半
徑,則M在∠BOA的平分線上,
同理,N也在∠BOA的平分線上,即O,M,N
三點(diǎn)共線,且OMN為∠BOA的平分線,
∵M(jìn)的坐標(biāo)為,∴M到軸的距離為1,即
⊙M的半徑為1,
則⊙M的方程為,
設(shè)⊙N的半徑為,其與軸的的切點(diǎn)為C,連接MA、MC,
由Rt△OAM∽R(shí)t△OCN可知,OM:ON=MA:NC,即,
則OC=,則⊙N的方程為;
(2)由對稱性可知,所求的弦長等于過A點(diǎn)直線MN的平行線被⊙截得的弦
的長度,此弦的方程是,即:,
圓心N到該直線的距離d=,則弦長=.
另解:求得B(),再得過B與MN平行的直線方程,圓心N到該直線的距離=,則弦長=.
(也可以直接求A點(diǎn)或B點(diǎn)到直線MN的距離,進(jìn)而求得弦長)
18.解(1)由題意的中垂線方程分別為,
于是圓心坐標(biāo)為…………………………………4分
=>,即 >即>所以> ,
于是> 即> ,所以< 即 <<………………8分
(2)假設(shè)相切, 則,……………………………………………………10分
,………13分這與<<矛盾.
故直線不能與圓相切. ………………………………………………16分
19.解(Ⅰ)∵,
∴
∴,∴,令,得,列表如下:
2
0
遞減
極小值
遞增
∴在處取得極小值,
即的最小值為.
,∵,∴,又,∴.
(Ⅱ)證明由(Ⅰ)知,的最小值是正數(shù),∴對一切,恒有從而當(dāng)時(shí),恒有,故在上是增函數(shù).
(Ⅲ)證明由(Ⅱ)知:在上是增函數(shù),
∴當(dāng)時(shí),, 又,
∴,即,∴
故當(dāng)時(shí),恒有.
20.解:(1)數(shù)列{an}的前n項(xiàng)和,
…2分
又, …………4分
是正項(xiàng)等比數(shù)列,, …………6分
公比,數(shù)列 …………8分
(2)解法一:,
由 …………11分
,當(dāng), …………13分
又故存在正整數(shù)M,使得對一切M的最小值為2.…16分
(2)解法二:令,11分
由,
函數(shù)……13分
對于
故存在正整數(shù)M,使得對一切恒成立,M的最小值為2.……16分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com