(II)若是過點(diǎn)且垂直于軸的直線.是否存在直線.使得與曲線交于兩個(gè)不同的點(diǎn).且恰被平分?若存在.求出的斜率的取值范圍,若不存在.請(qǐng)說明理由. 查看更多

 

題目列表(包括答案和解析)

橢圓(a>b>0),直線y=k(x-1)經(jīng)過橢圓C的一個(gè)焦點(diǎn)與其相交于點(diǎn)M,N,且點(diǎn)在橢圓C上.
(I)求橢圓C的方程;
(II)若線段MN的垂直平分線與x軸相交于點(diǎn)P,問:在x軸上是否存在一個(gè)定點(diǎn)Q,使得為定值?若存在,求出點(diǎn)Q的坐標(biāo)和的值;若不存在,說明理由.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),直線y=k(x-1)經(jīng)過橢圓C的一個(gè)焦點(diǎn)與其相交于點(diǎn)M,N,且點(diǎn)A(1,
3
2
)
在橢圓C上.
(I)求橢圓C的方程;
(II)若線段MN的垂直平分線與x軸相交于點(diǎn)P,問:在x軸上是否存在一個(gè)定點(diǎn)Q,使得
|PQ|
|MN|
為定值?若存在,求出點(diǎn)Q的坐標(biāo)和
|PQ|
|MN|
的值;若不存在,說明理由.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),直線y=k(x-1)經(jīng)過橢圓C的一個(gè)焦點(diǎn)與其相交于點(diǎn)M,N,且點(diǎn)A(1,
3
2
)
在橢圓C上.
(I)求橢圓C的方程;
(II)若線段MN的垂直平分線與x軸相交于點(diǎn)P,問:在x軸上是否存在一個(gè)定點(diǎn)Q,使得
|PQ|
|MN|
為定值?若存在,求出點(diǎn)Q的坐標(biāo)和
|PQ|
|MN|
的值;若不存在,說明理由.

查看答案和解析>>

已知A,B 分別為曲線C: +=1(y0,a>0)與x軸的左、右兩個(gè)交點(diǎn),直線過點(diǎn)B,且與軸垂直,S為上異于點(diǎn)B的一點(diǎn),連結(jié)AS交曲線C于點(diǎn)T.

(1)若曲線C為半圓,點(diǎn)T為圓弧的三等分點(diǎn),試求出點(diǎn)S的坐標(biāo);

(II)如圖,點(diǎn)M是以SB為直徑的圓與線段TB的交點(diǎn),試問:是否存在,使得O,M,S三點(diǎn)共線?若存在,求出a的值,若不存在,請(qǐng)說明理由。w.w

.w.k.s.5.u.c.o.m                                  

查看答案和解析>>

已知A,B 分別為曲線C: +=1(y0,a>0)與x軸的左、右兩個(gè)交點(diǎn),直線過點(diǎn)B,且與軸垂直,S為上異于點(diǎn)B的一點(diǎn),連結(jié)AS交曲線C于點(diǎn)T.

(1)若曲線C為半圓,點(diǎn)T為圓弧的三等分點(diǎn),試求出點(diǎn)S的坐標(biāo);

(II)如圖,點(diǎn)M是以SB為直徑的圓與線段TB的交點(diǎn),試問:是否存在,使得O,M,S三點(diǎn)共線?若存在,求出a的值,若不存在,請(qǐng)說明理由。    

查看答案和解析>>

一、選擇題

1.選D。提示:在映射f作用下,四邊形ABCD整體平移,面積不變

2,4,6

3.選B。提示:3的對(duì)面的數(shù)字是6,4 的對(duì)面的數(shù)字是2,故。

4.選B。提示:設(shè)A∪B元素個(gè)數(shù)為y,可知10≤y≤16, y∈N,又由x = 18-y可得。

5.選A。提示: 可知一條對(duì)稱軸。

6.選A。提示:依題意:課外興趣味小組由4名女生2名男生組成,共有種選法.其概率為

7.選C。提示:設(shè)代入,記,

,,,。

8.選A。提示:  

9.選B。提示:原方程兩邊立方并整理得,,顯然,,由于 上是增函數(shù),且,,所以。

10.選C。提示:①正確;②正確,即為公垂線AB的中垂面;③正確,過AB中點(diǎn) 的平行線,則的平分線符合條件;④不正確,關(guān)于對(duì)稱的兩條異面線段的中點(diǎn)與共線。

二、填空題

11.。提示:最小系數(shù)為。

12.。提示:,

13.11.提示:,,取。

14.。提示:由已知,,即,由線性規(guī)劃知識(shí)知,當(dāng),時(shí)達(dá)到最大值。

15.。提示:令,則,因?yàn)?sub>,所以

      0

      1

      2

       

       

       

       

       

       

             。

      17.。提示:令,得;令,得;令,得;令,得;故。

      三、解答題

      18.解:(I)

      ――――7分

      (II)因?yàn)?sub>為銳角,且,所以。――――9分

      ――14分

      19.解:(I)因?yàn)?sub>平面,

      所以平面平面,

      ,所以平面,

      ,又

      所以平面;――――4分

      (II)因?yàn)?sub>,所以四邊形為 

      菱形,

      ,又中點(diǎn),知。

      中點(diǎn),則平面,從而面,

             過,則,

             在中,,故,

             即到平面的距離為。――――9分

             (III)過,連,則,

             從而為二面角的平面角,

             在中,,所以,

      中,,

             故二面角的大小為。14分

       

             解法2:(I)如圖,取的中點(diǎn),則,因?yàn)?sub>,

             所以,又平面,

             以軸建立空間坐標(biāo)系,

             則,,,

      ,,

      ,,

      ,由,知,

             又,從而平面;――――4分

             (II)由,得。

             設(shè)平面的法向量為,,,所以

      ,設(shè),則

             所以點(diǎn)到平面的距離。――9分

             (III)再設(shè)平面的法向量為,,,

             所以

      ,設(shè),則,

             故,根據(jù)法向量的方向,

             可知二面角的大小為。――――14分

      20.解:(I)設(shè),則,因?yàn)?sub> ,可得;又由,

             可得點(diǎn)的軌跡的方程為。――――6分(沒有扣1分)

             (II)假設(shè)存在直線,代入并整理得

      ,――――8分

             設(shè),則   ――――10分

             又

            

      ,解得――――13分

             特別地,若,代入得,,此方程無解,即

             綜上,的斜率的取值范圍是。――――14分

      21.解:(I)

             (1)當(dāng)時(shí),函數(shù)增函數(shù),

             此時(shí),

      ,所以;――2分

             (2)當(dāng)時(shí),函數(shù)減函數(shù),此時(shí),

      ,所以;――――4分

             (3)當(dāng)時(shí),若,則,有

             若,則,有

             因此,,――――6分

             而,

             故當(dāng)時(shí),,有

             當(dāng)時(shí),,有;――――8分

      綜上所述:。――――10分

             (II)畫出的圖象,如右圖。――――12分

             數(shù)形結(jié)合,可得。――――14分

      22.解: (Ⅰ)先用數(shù)學(xué)歸納法證明,.

             (1)當(dāng)n=1時(shí),由已知得結(jié)論成立;

             (2)假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即.則當(dāng)n=k+1時(shí),

             因?yàn)?<x<1時(shí),,所以f(x)在(0,1)上是增函數(shù).

             又f(x)在上連續(xù),所以f(0)<f()<f(1),即0<.

             故當(dāng)n=k+1時(shí),結(jié)論也成立. 即對(duì)于一切正整數(shù)都成立.――――4分

             又由, 得,從而.

             綜上可知――――6分

             (Ⅱ)構(gòu)造函數(shù)g(x)=-f(x)= , 0<x<1,

             由,知g(x)在(0,1)上增函數(shù).

             又g(x)在上連續(xù),所以g(x)>g(0)=0.

          因?yàn)?sub>,所以,即>0,從而――――10分

             (Ⅲ) 因?yàn)?,所以, ,

             所以   ――――① , ――――12分

             由(Ⅱ)知:,  所以= ,

             因?yàn)?sub>, n≥2,

          所以 <<=――――② .  ――――14分

             由①② 兩式可知: .――――16分


      同步練習(xí)冊(cè)答案
      <nav id="zsfi2"></nav>

      <samp id="zsfi2"><legend id="zsfi2"></legend></samp>